Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Theory of Reproducing Kernels and Applications [electronic resource] / by Saburou Saitoh, Yoshihiro Sawano.

By: Contributor(s): Material type: TextTextSeries: Developments in Mathematics ; 44Publisher: Singapore : Springer Singapore : Imprint: Springer, 2016Description: XVIII, 452 p. 1 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789811005305
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515.7 23
LOC classification:
  • QA319-329.9
Online resources:
Contents:
Definitions and examples of reproducing kernel Hilbert spaces -- Fundamental properties of RKHS -- Moore Penrose generalized inverses and Tikhonov regularization -- Real inversion formulas of the Laplace transform -- Applications to ordinary differential equations -- Applications to partial differential equations -- Applications to integral equations -- Special topics on reproducing kernels -- Appendices -- Index.
In: Springer eBooksSummary: This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapter 7, typical integral equations are presented with discretization methods. These chapters are applications of the general theories of Chapter 3 with the purpose of practical and numerical constructions of the solutions. In Chapter 8, hot topics on reproducing kernels are presented; namely, norm inequalities, convolution inequalities, inversion of an arbitrary matrix, representations of inverse mappings, identifications of nonlinear systems, sampling theory, statistical learning theory and membership problems. Relationships among eigen-functions, initial value problems for linear partial differential equations, and reproducing kernels are also presented. Further, new fundamental results on generalized reproducing kernels, generalized delta functions, generalized reproducing kernel Hilbert spaces, and as well, a general integral transform theory are introduced. In three Appendices, the deep theory of Akira Yamada discussing the equality problems in nonlinear norm inequalities, Yamada's unified and generalized inequalities for Opial's inequalities and the concrete and explicit integral representation of the implicit functions are presented.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1905
Total holds: 0

Definitions and examples of reproducing kernel Hilbert spaces -- Fundamental properties of RKHS -- Moore Penrose generalized inverses and Tikhonov regularization -- Real inversion formulas of the Laplace transform -- Applications to ordinary differential equations -- Applications to partial differential equations -- Applications to integral equations -- Special topics on reproducing kernels -- Appendices -- Index.

This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapter 7, typical integral equations are presented with discretization methods. These chapters are applications of the general theories of Chapter 3 with the purpose of practical and numerical constructions of the solutions. In Chapter 8, hot topics on reproducing kernels are presented; namely, norm inequalities, convolution inequalities, inversion of an arbitrary matrix, representations of inverse mappings, identifications of nonlinear systems, sampling theory, statistical learning theory and membership problems. Relationships among eigen-functions, initial value problems for linear partial differential equations, and reproducing kernels are also presented. Further, new fundamental results on generalized reproducing kernels, generalized delta functions, generalized reproducing kernel Hilbert spaces, and as well, a general integral transform theory are introduced. In three Appendices, the deep theory of Akira Yamada discussing the equality problems in nonlinear norm inequalities, Yamada's unified and generalized inequalities for Opial's inequalities and the concrete and explicit integral representation of the implicit functions are presented.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in