Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Stability Theory for Dynamic Equations on Time Scales [electronic resource] / by Anatoly A. Martynyuk.

By: Contributor(s): Material type: TextTextSeries: Systems & Control: Foundations & ApplicationsPublisher: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016Description: XI, 223 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319422138
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515.39 23
  • 515.48 23
LOC classification:
  • QA313
Online resources:
Contents:
Contents -- Preface -- 1 Elements of Time Scales Analysis -- 2 Method of Dynamic Integral Inequalities -- 3 Lyapunov Theory for Dynamic Equations -- 4 Comparison Method -- 5 Applications -- References.
In: Springer eBooksSummary: This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.” Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1907
Total holds: 0

Contents -- Preface -- 1 Elements of Time Scales Analysis -- 2 Method of Dynamic Integral Inequalities -- 3 Lyapunov Theory for Dynamic Equations -- 4 Comparison Method -- 5 Applications -- References.

This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.” Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in