Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Normal view MARC view ISBD view

Surface-Knots in 4-Space [electronic resource] : An Introduction / by Seiichi Kamada.

By: Kamada, Seiichi [author.].
Contributor(s): SpringerLink (Online service).
Material type: TextTextSeries: Springer Monographs in Mathematics: Publisher: Singapore : Springer Singapore : Imprint: Springer, 2017Description: XI, 212 p. 146 illus. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9789811040917.Subject(s): Geometry | Algebraic topology | Cell aggregation -- Mathematics | Geometry | Algebraic Topology | Manifolds and Cell Complexes (incl. Diff.Topology)Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 516 Online resources: Click here to access online
Contents:
1 Surface-knots -- 2 Knots -- 3 Motion pictures -- 4 Surface diagrams -- 5 Handle surgery and ribbon surface-knots -- 6 Spinning construction -- 7 Knot concordance -- 8 Quandles -- 9 Quandle homology groups and invariants -- 10 2-Dimensional braids -- Bibliography -- Epilogue -- Index.
In: Springer eBooksSummary: This introductory volume provides the basics of surface-knots and related topics, not only for researchers in these areas but also for graduate students and researchers who are not familiar with the field. Knot theory is one of the most active research fields in modern mathematics. Knots and links are closed curves (one-dimensional manifolds) in Euclidean 3-space, and they are related to braids and 3-manifolds. These notions are generalized into higher dimensions. Surface-knots or surface-links are closed surfaces (two-dimensional manifolds) in Euclidean 4-space, which are related to two-dimensional braids and 4-manifolds. Surface-knot theory treats not only closed surfaces but also surfaces with boundaries in 4-manifolds. For example, knot concordance and knot cobordism, which are also important objects in knot theory, are surfaces in the product space of the 3-sphere and the interval. Included in this book are basics of surface-knots and the related topics of classical knots, the motion picture method, surface diagrams, handle surgeries, ribbon surface-knots, spinning construction, knot concordance and 4-genus, quandles and their homology theory, and two-dimensional braids.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

1 Surface-knots -- 2 Knots -- 3 Motion pictures -- 4 Surface diagrams -- 5 Handle surgery and ribbon surface-knots -- 6 Spinning construction -- 7 Knot concordance -- 8 Quandles -- 9 Quandle homology groups and invariants -- 10 2-Dimensional braids -- Bibliography -- Epilogue -- Index.

This introductory volume provides the basics of surface-knots and related topics, not only for researchers in these areas but also for graduate students and researchers who are not familiar with the field. Knot theory is one of the most active research fields in modern mathematics. Knots and links are closed curves (one-dimensional manifolds) in Euclidean 3-space, and they are related to braids and 3-manifolds. These notions are generalized into higher dimensions. Surface-knots or surface-links are closed surfaces (two-dimensional manifolds) in Euclidean 4-space, which are related to two-dimensional braids and 4-manifolds. Surface-knot theory treats not only closed surfaces but also surfaces with boundaries in 4-manifolds. For example, knot concordance and knot cobordism, which are also important objects in knot theory, are surfaces in the product space of the 3-sphere and the interval. Included in this book are basics of surface-knots and the related topics of classical knots, the motion picture method, surface diagrams, handle surgeries, ribbon surface-knots, spinning construction, knot concordance and 4-genus, quandles and their homology theory, and two-dimensional braids.

There are no comments for this item.

Log in to your account to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in


Visitor Counter