Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Spectral Analysis of Growing Graphs [electronic resource] : A Quantum Probability Point of View / by Nobuaki Obata.

By: Contributor(s): Material type: TextTextSeries: SpringerBriefs in Mathematical Physics ; 20Publisher: Singapore : Springer Singapore : Imprint: Springer, 2017Description: VIII, 138 p. 22 illus., 9 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789811035067
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 530.15 23
LOC classification:
  • QA401-425
  • QC19.2-20.85
Online resources:
Contents:
1. Graphs and Matrices -- 2. Spectra of Finite Graphs -- 3. Spectral Distributions of Graphs -- 4. Orthogonal Polynomials and Fock Spaces -- 5. Analytic Theory of Moments -- 6. Method of Quantum Decomposition -- 7. Graph Products and Asymptotics -- References -- Index.
In: Springer eBooksSummary: This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectral distributions, and various ideas and methods on the basis of quantum probability. It is also useful for a quick introduction to quantum probability and for an analytic basis of orthogonal polynomials.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

1. Graphs and Matrices -- 2. Spectra of Finite Graphs -- 3. Spectral Distributions of Graphs -- 4. Orthogonal Polynomials and Fock Spaces -- 5. Analytic Theory of Moments -- 6. Method of Quantum Decomposition -- 7. Graph Products and Asymptotics -- References -- Index.

This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectral distributions, and various ideas and methods on the basis of quantum probability. It is also useful for a quick introduction to quantum probability and for an analytic basis of orthogonal polynomials.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in