Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Geometric Invariant Theory [electronic resource] : Over the Real and Complex Numbers / by Nolan R. Wallach.

By: Contributor(s): Material type: TextTextSeries: UniversitextPublisher: Cham : Springer International Publishing : Imprint: Springer, 2017Description: XIV, 190 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319659077
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 516.35 23
LOC classification:
  • QA564-609
Online resources:
Contents:
Preface -- Part I. Background Theory -- 1. Algebraic Geometry -- 2. Lie Groups and Algebraic Groups -- Part II. Geometric Invariant Theory -- 3.  The Affine Theory -- 4. Weight Theory in Geometric Invariant Theory -- 5. Classical and Geometric Invariant Theory for Products of Classical Groups -- References -- Index.
In: Springer eBooksSummary: Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry.  Throughout the book, examples are emphasized. Exercises add to the reader’s understanding of the material; most are enhanced with hints. The exposition is divided into two parts. The first part, ‘Background Theory’, is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic groups. Part 2, ‘Geometric Invariant Theory’ consists of three chapters (3–5). Chapter 3 centers on the Hilbert–Mumford theorem and contains a complete development of the Kempf–Ness theorem and Vindberg’s theory. Chapter 4 studies the orbit structure of a reductive algebraic group on a projective variety emphasizing Kostant’s theory. The final chapter studies the extension of classical invariant theory to products of classical groups emphasizing recent applications of the theory to physics.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Preface -- Part I. Background Theory -- 1. Algebraic Geometry -- 2. Lie Groups and Algebraic Groups -- Part II. Geometric Invariant Theory -- 3.  The Affine Theory -- 4. Weight Theory in Geometric Invariant Theory -- 5. Classical and Geometric Invariant Theory for Products of Classical Groups -- References -- Index.

Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry.  Throughout the book, examples are emphasized. Exercises add to the reader’s understanding of the material; most are enhanced with hints. The exposition is divided into two parts. The first part, ‘Background Theory’, is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic groups. Part 2, ‘Geometric Invariant Theory’ consists of three chapters (3–5). Chapter 3 centers on the Hilbert–Mumford theorem and contains a complete development of the Kempf–Ness theorem and Vindberg’s theory. Chapter 4 studies the orbit structure of a reductive algebraic group on a projective variety emphasizing Kostant’s theory. The final chapter studies the extension of classical invariant theory to products of classical groups emphasizing recent applications of the theory to physics.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in