Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere [electronic resource] / by Yuri N. Skiba.

By: Contributor(s): Material type: TextTextPublisher: Cham : Springer International Publishing : Imprint: Springer, 2017Description: XII, 239 p. 34 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319654126
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 519 23
LOC classification:
  • QC19.2-20.85
Online resources:
Contents:
Chapter 01- Introduction -- Chapter 02- Spaces of Functions on a Sphere -- Chapter 03- Solvability of Vorticity Equation on a Sphere -- Chapter 04- Dynamics of Ideal Fluid on a Sphere -- Chapter 05- Stability of Rossby-Haurwitz (RH) Waves -- Chapter 06- Stability of Modons and Wu-Verkley waves -- Chapter 07- Linear and Nonlinear Stability of Flows -- Chapter 08- Numerical Study of Linear Stability -- References.
In: Springer eBooksSummary: This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Chapter 01- Introduction -- Chapter 02- Spaces of Functions on a Sphere -- Chapter 03- Solvability of Vorticity Equation on a Sphere -- Chapter 04- Dynamics of Ideal Fluid on a Sphere -- Chapter 05- Stability of Rossby-Haurwitz (RH) Waves -- Chapter 06- Stability of Modons and Wu-Verkley waves -- Chapter 07- Linear and Nonlinear Stability of Flows -- Chapter 08- Numerical Study of Linear Stability -- References.

This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in