Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Deep learning/ Ian Goodfellow, Yoshua Bengio and Aaron Courville

By: Contributor(s): Material type: TextTextSeries: Adaptive Computation and Machine LearningPublication details: Cambridge: MIT Press, 2016Description: xxii, 775 pages; 23 cmISBN:
  • 9780262035613
Subject(s): DDC classification:
  • 006.31 G651
Contents:
Introduction -- Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Linear factor models -- Autoencoders -- Representation learning -- Structural probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models
Summary: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Notes Date due Barcode Item holds
Books ISI Library, Kolkata 006.31 G651 (Browse shelf(Opens below)) Checked out Gifted by Prof. Amita Pal 22/01/2025 C27510
Books ISI Library, Kolkata 006.31 G651 (Browse shelf(Opens below)) Available Gifted by Prof Sankar Kumar Pal (CSCR) C26949
Total holds: 0

Includes bibliography and index

Introduction -- Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Linear factor models -- Autoencoders -- Representation learning -- Structural probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in