Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Exploratory multivariate analysis by example using R/ Francois Husson, Sebastian Le and Jerome Pages

By: Contributor(s): Material type: TextTextSeries: Computer science and Data analysis SeriesPublication details: Boca Raton: CRC Press, 2010Description: X, 228 pages; tables and dig.; 24 cmISBN:
  • 9781439835807
Subject(s): DDC classification:
  • 23rd.  SA.07 H972
Contents:
Principal Component Analysis PCA -- Correspondence Analysis CA -- Multiple Correspondence Analysis MCA -- Clustering
Summary: Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis. The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualizing objects that are common to the exploratory methods. The authors show how to use categorical variables in a PCA context in which variables are quantitative, how to handle more than two categorical variables in a CA context in which there are originally two variables, and how to add quantitative variables in an MCA context in which variables are categorical. They also illustrate the methods and the ways they can be exploited using examples from various fields. Throughout the text, each result correlates with an R command accessible in the FactoMineR package developed by the authors. All of the data sets and code are available at http://factominer.free.fr/book By using the theory, examples, and software presented in this book, readers will be fully equipped to tackle real-life multivariate data.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Notes Date due Barcode Item holds
Books ISI Library, Kolkata SA.07 H972 (Browse shelf(Opens below)) Available Gifted by Prof. Ashis Kumar Chakraborty C27553
Total holds: 0

Includes index and bibliography

Principal Component Analysis PCA -- Correspondence Analysis CA -- Multiple Correspondence Analysis MCA -- Clustering

Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis.

The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualizing objects that are common to the exploratory methods. The authors show how to use categorical variables in a PCA context in which variables are quantitative, how to handle more than two categorical variables in a CA context in which there are originally two variables, and how to add quantitative variables in an MCA context in which variables are categorical. They also illustrate the methods and the ways they can be exploited using examples from various fields.

Throughout the text, each result correlates with an R command accessible in the FactoMineR package developed by the authors. All of the data sets and code are available at http://factominer.free.fr/book

By using the theory, examples, and software presented in this book, readers will be fully equipped to tackle real-life multivariate data.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in