Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Embedding problems for the ´etale fundamental group of curves/ Poulami Mandal

By: Material type: TextTextPublication details: Bangalore: Indian Statistical Institute, 2024Description: vii, 63 pagesSubject(s): DDC classification:
  • 23 516.35  P874
Online resources:
Contents:
Preliminaries -- Motivation and main problems -- Proofs of the main results
Production credits:
  • Guided by Prof. Manish Kumar
Dissertation note: Thesis (Ph.D.)- Indian statistical Institute, 2024 Summary: Let X be a smooth projective curve over an algebraically closed field k of char- acteristic p > 0, S be a finite subset of closed points in X. Given an embedding problem (β : Γ ↠ G, α : π´et 1 (X \S) ↠ G) for the ´etale fundamental group π´et 1 (X \S), where H = ker(β) is prime-to-p, we discuss when an H-cover W → V of the G- cover V → X corresponding to α is a proper solution. When H is abelian and G is a p-group, some necessary and sufficient conditions for solving the embedding prob- lems are given in terms of the action of G on a certain generalization of Pic0(V )[m], the m-torsion of the Picard group. When a solution exists, we discuss the problem of finding the number of (non-equivalent) solutions and the minimum of genera of the covers corresponding to proper solutions for the given embedding problem.
Tags from this library: No tags from this library for this title. Log in to add tags.

Thesis (Ph.D.)- Indian statistical Institute, 2024

Includes bibliography

Preliminaries -- Motivation and main problems -- Proofs of the main results

Guided by Prof. Manish Kumar

Let X be a smooth projective curve over an algebraically closed field k of char- acteristic p > 0, S be a finite subset of closed points in X. Given an embedding problem (β : Γ ↠ G, α : π´et 1 (X \S) ↠ G) for the ´etale fundamental group π´et 1 (X \S), where H = ker(β) is prime-to-p, we discuss when an H-cover W → V of the G- cover V → X corresponding to α is a proper solution. When H is abelian and G is a p-group, some necessary and sufficient conditions for solving the embedding prob- lems are given in terms of the action of G on a certain generalization of Pic0(V )[m], the m-torsion of the Picard group. When a solution exists, we discuss the problem of finding the number of (non-equivalent) solutions and the minimum of genera of the covers corresponding to proper solutions for the given embedding problem.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in