TY - BOOK AU - Chenevier,Gaetan AU - Renard,David TI - Level one algebraic cusp forms of classical groups of small rank T2 - Memoirs of the American Mathematical Society SN - 9781470410940 (pbk. : alk. paper) U1 - 510 23 PY - 2015/// CY - Providence : PB - American Mathematical Society KW - Forms (Mathematics) KW - Cusp forms (Mathematics) N1 - Includes bibliographical references; Chapter 1. Introduction Chapter 2. Polynomial invariants of finite subgroups of compact connected Lie groups Chapter 3. Automorphic representations of classical groups : review of Arthur's results Chapter 4. Determination of $\Pi _{\rm alg}^\bot ({\rm PGL}_n)$ for $n\leq 5$ Chapter 5. Description of $\Pi _{\rm disc}({\rm SO}_7)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_6)$ Chapter 6. Description of $\Pi _{\rm disc}({\rm SO}_9)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_8)$ Chapter 7. Description of $\Pi _{\rm disc}({\rm SO}_8)$ and $\Pi _{\rm alg}^{\rm o}({\rm PGL}_8)$ Chapter 8. Description of $\Pi _{\rm disc}({\rm G}_2)$ Chapter 9. Application to Siegel modular forms Appendix A. Adams-Johnson packets Appendix B. The Langlands group of $\mathbb {Z}$ and Sato-Tate groups Appendix C. Tables Appendix D. The $121$ level $1$ automorphic representations of ${\rm SO}_{25}$ with trivial coefficients Bibliography N2 - The authors determine the number of level $1$, polarized, algebraic regular, cuspidal automorphic representations of $\mathrm{GL}_n$ over $\mathbb Q$ of any given infinitesimal character, for essentially all $n \leq 8$ ER -