TY - BOOK AU - Burban,Igor AU - Drozd,Yuriy TI - Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems T2 - Memoirs of the American Mathematical Society SN - 9781470425371 (pbk. : alk. paper) U1 - 510 23 PY - 2017/// CY - Providence : PB - American Mathematical Society, KW - Cohen-Macaulay modules KW - Modules (Algebra) KW - Singularities (Mathematics) KW - Matrices N1 - "Volume 248, number 1178 (fourth of 5 numbers), July 2017."; Includes bibliographical references; Introduction, motivation, and historical remarks -- 1. Generalities on maximal Cohen-Macaulay modules -- 2. Category of triples in dimension one -- 3. Main construction -- 4. Serre quotients and proof of main theorem -- 5. Singularities obtained by gluing cyclic quotient singularities -- 6. Maximal Cohen-Macaulay modules over k[x,y,z]/(x p2 s+y p3 s-xyz) -- 7. Representations of decorated bundles of chans - I -- 8. Maximal Cohen-Macaulay modules over degenerate cusps - I -- 9. Maximal Cohen-Macaulay modules over degenerate cusps - II -- 10. Schreyer's question -- 11. Remarks on rings of discrete and tame CM-representation type -- 12. Representations of decorated bunches of chans - II N2 - Develops a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, the authors give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. ER -