TY - BOOK AU - Müller,Paul F.X. ED - SpringerLink (Online service) TI - Isomorphisms between H1 Spaces T2 - Monografie Matematyczne, SN - 9783764373450 AV - QA299.6-433 U1 - 515 23 PY - 2005/// CY - Basel PB - Birkhäuser Basel KW - Global analysis (Mathematics) KW - Harmonic analysis KW - Functional analysis KW - Distribution (Probability theory KW - Analysis KW - Abstract Harmonic Analysis KW - Functional Analysis KW - Probability Theory and Stochastic Processes N1 - The Haar System: Basic Facts and Classical Results -- Projections, Isomorphisms and Interpolation -- Combinatorics of Colored Dyadic Intervals -- Martingale H1 Spaces -- Isomorphic Invariants for H1 -- Atomic H1 Spaces N2 - This book presents a thorough and self-contained presentation of H¹ and its known isomorphic invariants, such as the uniform approximation property, the dimension conjecture, and dichotomies for the complemented subspaces. The necessary background is developed from scratch. This includes a detailed discussion of the Haar system, together with the operators that can be built from it (averaging projections, rearrangement operators, paraproducts, Calderon-Zygmund singular integrals). Complete proofs are given for the classical martingale inequalities of C. Fefferman, Burkholder, and Khinchine-Kahane, and for large deviation inequalities. Complex interpolation, analytic families of operators, and the Calderon product of Banach lattices are treated in the context of H^p spaces. Througout the book, special attention is given to the combinatorial methods developed in the field, particularly J. Bourgain's proof of the dimension conjecture, L. Carleson's biorthogonal system in H¹, T. Figiel's integral representation, W.B. Johnson's factorization of operators, B. Maurey's isomorphism, and P. Jones' proof of the uniform approximation property. An entire chapter is devoted to the study of combinatorics of colored dyadic intervals UR - https://doi.org/10.1007/b137684 ER -