TY - BOOK TI - Séminaire Bourbaki: volume 2022/2023, exposés 1197-1210 T2 - Astérisque SN - 9782856299845 U1 - 516.36 23 PY - 2023/// CY - Marseille PB - Société Mathématique de France KW - Differential geometry N1 - Includes bibliography; Javier Fresan: The unbounded denominators conjecture -- Francois Golse: Validite de la theorie cinetique des gaz: au-dela de l'equation de Boltzman -- Ben Krause: pointwise Ergodic theory: examples and entropy -- Silvain Rideau-Kikuchi: Sur un theoreme de Lang-Weil tordu -- Gabriel Dospinescu: La conjecture du facteur direct -- Mylene Maida: Strong convergence of the spectrum of random permutations and almost-Ramanujan graphs -- Mikael de la Salle: Algebras de von Neumann, produits tensoriels, correlations quantiques et calculabilite -- Etienne Ghys: Le groupe des homeomorphismes de la sphere de dimension 2 qui respectent l'aire et l'orientation n'est pas un groupe simple -- Jonathan Hickman: Pontwise convergence for the Schrodinger equation -- Clara Loh: exponential growth rates in hyperbolic groups -- Matteo Viale: Strong forcing axioms and the continuum problem -- Anne-Laure Dalibard: Non-unicite des solutions du systeme de Navier-Stokes avec terme source -- Daniel Juteau: Categories tensorielles symetriques en caracteristique positive -- Vincent Tassion: Rotation invariance for planar percolation N2 - This 74th volume of the Bourbaki Seminar gathers the texts of the fourteen lectures delivered during the year 2022/2023: unbounded denominators conjecture, validity of the kinetic theory of gases, pointwise ergodic theory, twisted Lang-Weil theorem, direct factor conjecture, random permutations and Ramanujan graphs, von Neumann algebras and quantum correlations, structure of the group of homeomorphisms of the 2-dimensional sphere, pointwise convergence for the Schrödinger equation, exponential growth in hyperbolic groups, strong forcing axioms and the continuum problem, non-uniqueness of Leray solutions to the Navier-Stokes system, tensor categories in positive characteristic, and rotation invariance for planar percolation ER -