TY - BOOK AU - Fox,John TI - Applied regression analysis and generalized linear models SN - 9781452205663 U1 - 000SA.06 23 PY - 2016/// CY - Los Angeles PB - SAGE KW - Regression analysis KW - Linear models (Statistics) KW - Social sciences KW - Statistical methods N1 - Includes bibliographical references and indexes; 1. Statistical models and social science -- 2. What is regression analysis? -- 3. Examining data -- 4. Transforming data -- 5. Linear least-squares regression -- 6. Statistical inference for regression -- 7. Dummy-variable regression -- 8. Analysis of variance -- 9. Statistical theory for linear models -- 10. The vector geometry of linear models -- 11. Unusual and influential data -- 12. Diagnosing non-normality, nonconstrant error variance, and nonlinearity -- 13. Collinearity and its purported remedies -- 14. Logit and probit models for categorical response variables -- 15. Generalized linear models -- 16. Time-series regression and generalized least squares -- 17. Nonlinear regression -- 18. Nonparametric regression -- 19. Robust regression -- 20. Missing data in regression models -- 21. Bootstrapping regression models -- 22. Model selection, averaging, and validation -- 23. Linear mixed-effects models for hierarchical and longitudinal data -- 24. Generalized linear and nonlinear mixed-effects models -- Appendices N2 - Providing a modern treatment of regression analysis, linear models and closely related methods, this book introduces students to one of the most useful and widely used statistical tools for social research. ER -