Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Handbook of big data / [edited by] Peter Buhlmann...[et al.].

Contributor(s): Material type: TextTextSeries: Chapman & Hall/CRC handbooks of modern statistical methodsPublication details: Boca Raton : CRC Press, ©2016.Description: xvi, 464 pages : illustrations (some color) ; 26 cmISBN:
  • 9781482249071
Subject(s): Genre/Form: DDC classification:
  • 005.7 23 B931
Contents:
1. The advent of data science: some considerations on the unreasonable effectiveness of data / Richard J.C.M. Starmans -- 2. Big-n versus big-p in big data / Norman Matloff -- 3. Divide and recombine: approach for detailed analysis and visualization of large complex data / Ryan Hafen -- 4. Integrate big data for better operation, control, and protection of power systems / Guang Lin -- 5. Interactive visual analysis of big data / Carlos Scheidegger -- 6. A visualization tool for mining large correlation tables: the association navigator / Andreas Buja, Abba M. Krieger, and Edward I. George -- 7. High-dimensional computational geometry / Alexandr Andoni -- 8. IRLBA: fast partial singular value decomposition method / James Baglama -- 9. Structural properties underlying high-quality randomized numerical linear algebra algorithms / Michael W. Mahoney and Petros Drineas -- 10. Something for (almost) nothing: new advances in sublinear-time algorithms / Ronitt Rubinfeld and Eric Blais -- 11. Networks / Elizabeth L. Ogburn and Alexander Volfovsky -- 12. Mining large graphs / David F. Gleich and Michael W. Mahoney -- 13. Estimator and model selection using cross-validation / Ivan Diaz -- 14. Stochastic gradient methods for principled estimation with large datasets / Panos Toulis and Edoardo M. Airoldi -- 15. Learning structured distributions / Ilias Diakonikolas -- 16. Penalized estimation in complex methods / Jacob Bien and Daniela Witten -- 17. High-dimensional regression and inference / Lukas Meier -- 18. Divide and recombine: subsemble, exploiting the power of cross-validation / Stephanie Sapp and Erin LeDell -- 19. Scalable super learning / Erin LeDell -- 20. Tutorial for causal inference / Laura Balzer, Maya Petersen, and Mark van der Laan -- 21. A review of some recent advances in causal inference / Marloes H. Maathuis and Preetam Nandy -- 22. Targeted learning for variable importance / Sherri Rose -- 23. Online estimation of the average treatment effect / Sam Lendle -- 24. Mining with inference: data-adaptive target parameters / Alan Hubbard and Mark van der Laan.
Summary: Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books ISI Library, Kolkata 005.7 B931 (Browse shelf(Opens below)) Available 137988
Total holds: 0

Includes bibliographical references and index.

1. The advent of data science: some considerations on the unreasonable effectiveness of data / Richard J.C.M. Starmans --
2. Big-n versus big-p in big data / Norman Matloff --
3. Divide and recombine: approach for detailed analysis and visualization of large complex data / Ryan Hafen --
4. Integrate big data for better operation, control, and protection of power systems / Guang Lin --
5. Interactive visual analysis of big data / Carlos Scheidegger --
6. A visualization tool for mining large correlation tables: the association navigator / Andreas Buja, Abba M. Krieger, and Edward I. George --
7. High-dimensional computational geometry / Alexandr Andoni --
8. IRLBA: fast partial singular value decomposition method / James Baglama --
9. Structural properties underlying high-quality randomized numerical linear algebra algorithms / Michael W. Mahoney and Petros Drineas --
10. Something for (almost) nothing: new advances in sublinear-time algorithms / Ronitt Rubinfeld and Eric Blais --
11. Networks / Elizabeth L. Ogburn and Alexander Volfovsky --
12. Mining large graphs / David F. Gleich and Michael W. Mahoney --
13. Estimator and model selection using cross-validation / Ivan Diaz --
14. Stochastic gradient methods for principled estimation with large datasets / Panos Toulis and Edoardo M. Airoldi --
15. Learning structured distributions / Ilias Diakonikolas --
16. Penalized estimation in complex methods / Jacob Bien and Daniela Witten --
17. High-dimensional regression and inference / Lukas Meier --
18. Divide and recombine: subsemble, exploiting the power of cross-validation / Stephanie Sapp and Erin LeDell --
19. Scalable super learning / Erin LeDell --
20. Tutorial for causal inference / Laura Balzer, Maya Petersen, and Mark van der Laan --
21. A review of some recent advances in causal inference / Marloes H. Maathuis and Preetam Nandy --
22. Targeted learning for variable importance / Sherri Rose --
23. Online estimation of the average treatment effect / Sam Lendle --
24. Mining with inference: data-adaptive target parameters / Alan Hubbard and Mark van der Laan.

Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in