Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Advances in Iterative Methods for Nonlinear Equations [electronic resource] / edited by Sergio Amat, Sonia Busquier.

Contributor(s): Material type: TextTextSeries: SEMA SIMAI Springer Series ; 10Publisher: Cham : Springer International Publishing : Imprint: Springer, 2016Description: V, 286 p. 117 illus., 113 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319392288
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 518 23
LOC classification:
  • QA297-299.4
Online resources:
Contents:
1 S. Amat, S. Busquier, A. A. Magrenan and L. Orcos: An overview on Steffensen-type methods -- 2 Ioannis K. Argyros and Daniel Gonzalez: Newton’s Method for Convex Optimization -- 3 I. K. Argyros and Á. A. Magreñán: Inexact Newton methods on Riemannian Manifolds -- 4 Alicia Cordero and Juan R. Torregrosa: On the design of optimal iterative methods for solving nonlinear equations -- 5 J. A. Ezquerro and M. A. Hernandez-Veron: The theory of Kantorovich for Newton's method: conditions on the second derivative -- 6 J.-C. Yakoubsohn, J. M. Gutiérrez and Á. A. Magreñán: Complexity of an homotopy method at the neighbourhood of a zero -- 7 M. A. Hernandez-Veron and N. Romero: A qualitative analysis of a family of Newton-like iterative process with R-order of convergence at least three -- 8 J. M. Gutierrez, L. J. Hernandez, Á. A. Magreñán and M. T. Rivas: Measures of the basins of attracting n-cycles for the relaxed Newton's method -- 9 Miquel Grau-Sanchez and Miquel Noguera: On convergence and efficiency in the resolution of systems of nonlinear equations from a local analysis.
In: Springer eBooksSummary: This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation. .
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1924
Total holds: 0

1 S. Amat, S. Busquier, A. A. Magrenan and L. Orcos: An overview on Steffensen-type methods -- 2 Ioannis K. Argyros and Daniel Gonzalez: Newton’s Method for Convex Optimization -- 3 I. K. Argyros and Á. A. Magreñán: Inexact Newton methods on Riemannian Manifolds -- 4 Alicia Cordero and Juan R. Torregrosa: On the design of optimal iterative methods for solving nonlinear equations -- 5 J. A. Ezquerro and M. A. Hernandez-Veron: The theory of Kantorovich for Newton's method: conditions on the second derivative -- 6 J.-C. Yakoubsohn, J. M. Gutiérrez and Á. A. Magreñán: Complexity of an homotopy method at the neighbourhood of a zero -- 7 M. A. Hernandez-Veron and N. Romero: A qualitative analysis of a family of Newton-like iterative process with R-order of convergence at least three -- 8 J. M. Gutierrez, L. J. Hernandez, Á. A. Magreñán and M. T. Rivas: Measures of the basins of attracting n-cycles for the relaxed Newton's method -- 9 Miquel Grau-Sanchez and Miquel Noguera: On convergence and efficiency in the resolution of systems of nonlinear equations from a local analysis.

This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation. .

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in