Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Mathematical Modeling [electronic resource] / by Christof Eck, Harald Garcke, Peter Knabner.

By: Contributor(s): Material type: TextTextSeries: Springer Undergraduate Mathematics SeriesPublisher: Cham : Springer International Publishing : Imprint: Springer, 2017Description: XV, 509 p. 107 illus., 2 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319551616
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 003.3 23
LOC classification:
  • TA342-343
Online resources:
Contents:
1Introduction -- 2 Systems of Linear Equations -- 3 Basic Principles of Thermodynamics -- 4 Ordinary Differential Equations -- 5 Continuum Mechanics -- 6 Partial Differential Equations -- 7 Free Boundary Problems.-.
In: Springer eBooksSummary: Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

1Introduction -- 2 Systems of Linear Equations -- 3 Basic Principles of Thermodynamics -- 4 Ordinary Differential Equations -- 5 Continuum Mechanics -- 6 Partial Differential Equations -- 7 Free Boundary Problems.-.

Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in