Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Controlled Markov Processes and Viscosity Solutions [electronic resource] / by Wendell H. Fleming, H.M. Soner.

By: Contributor(s): Material type: TextTextSeries: Stochastic Modelling and Applied Probability ; 25Publisher: New York, NY : Springer New York, 2006Edition: Second EditionDescription: XVII, 429 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387310718
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 519.2 23
LOC classification:
  • QA273.A1-274.9
  • QA274-274.9
Online resources:
Contents:
Deterministic Optimal Control -- Viscosity Solutions -- Optimal Control of Markov Processes: Classical Solutions -- Controlled Markov Diffusions in ?n -- Viscosity Solutions: Second-Order Case -- Logarithmic Transformations and Risk Sensitivity -- Singular Perturbations -- Singular Stochastic Control -- Finite Difference Numerical Approximations -- Applications to Finance -- Differential Games.
In: Springer eBooksSummary: This book is intended as an introduction to optimal stochastic control for continuous time Markov processes and to the theory of viscosity solutions. Stochastic control problems are treated using the dynamic programming approach. The authors approach stochastic control problems by the method of dynamic programming. The fundamental equation of dynamic programming is a nonlinear evolution equation for the value function. For controlled Markov diffusion processes, this becomes a nonlinear partial differential equation of second order, called a Hamilton-Jacobi-Bellman (HJB) equation. Typically, the value function is not smooth enough to satisfy the HJB equation in a classical sense. Viscosity solutions provide framework in which to study HJB equations, and to prove continuous dependence of solutions on problem data. The theory is illustrated by applications from engineering, management science, and financial economics. In this second edition, new material on applications to mathematical finance has been added. Concise introductions to risk-sensitive control theory, nonlinear H-infinity control and differential games are also included. Review of the earlier edition: "This book is highly recommended to anyone who wishes to learn the dinamic principle applied to optimal stochastic control for diffusion processes. Without any doubt, this is a fine book and most likely it is going to become a classic on the area... ." SIAM Review, 1994.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Deterministic Optimal Control -- Viscosity Solutions -- Optimal Control of Markov Processes: Classical Solutions -- Controlled Markov Diffusions in ?n -- Viscosity Solutions: Second-Order Case -- Logarithmic Transformations and Risk Sensitivity -- Singular Perturbations -- Singular Stochastic Control -- Finite Difference Numerical Approximations -- Applications to Finance -- Differential Games.

This book is intended as an introduction to optimal stochastic control for continuous time Markov processes and to the theory of viscosity solutions. Stochastic control problems are treated using the dynamic programming approach. The authors approach stochastic control problems by the method of dynamic programming. The fundamental equation of dynamic programming is a nonlinear evolution equation for the value function. For controlled Markov diffusion processes, this becomes a nonlinear partial differential equation of second order, called a Hamilton-Jacobi-Bellman (HJB) equation. Typically, the value function is not smooth enough to satisfy the HJB equation in a classical sense. Viscosity solutions provide framework in which to study HJB equations, and to prove continuous dependence of solutions on problem data. The theory is illustrated by applications from engineering, management science, and financial economics. In this second edition, new material on applications to mathematical finance has been added. Concise introductions to risk-sensitive control theory, nonlinear H-infinity control and differential games are also included. Review of the earlier edition: "This book is highly recommended to anyone who wishes to learn the dinamic principle applied to optimal stochastic control for diffusion processes. Without any doubt, this is a fine book and most likely it is going to become a classic on the area... ." SIAM Review, 1994.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in