Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Modeling Life [electronic resource] : The Mathematics of Biological Systems / by Alan Garfinkel, Jane Shevtsov, Yina Guo.

By: Contributor(s): Material type: TextTextPublisher: Cham : Springer International Publishing : Imprint: Springer, 2017Description: XV, 445 p. 353 illus., 299 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319597317
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 570.285 23
LOC classification:
  • QH323.5
  • QH324.2-324.25
Online resources:
Contents:
1. Modeling, Change, and Simulation -- 2. Derivatives and Integrals -- 3. Equilibrium Behavior -- 4. Non-Equilibrium Dynamics: Oscillation -- 5. Chaos -- 6. Linear Algebra -- 7. Multivariable Systems -- Bibliography -- Index.
In: Springer eBooksSummary: From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. This book develops the mathematical tools essential for students in the life sciences to describe these interacting systems and to understand and predict their behavior. Complex feedback relations and counter-intuitive responses are common in dynamical systems in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

1. Modeling, Change, and Simulation -- 2. Derivatives and Integrals -- 3. Equilibrium Behavior -- 4. Non-Equilibrium Dynamics: Oscillation -- 5. Chaos -- 6. Linear Algebra -- 7. Multivariable Systems -- Bibliography -- Index.

From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. This book develops the mathematical tools essential for students in the life sciences to describe these interacting systems and to understand and predict their behavior. Complex feedback relations and counter-intuitive responses are common in dynamical systems in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in