Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Algebraic Geometry for Coding Theory and Cryptography [electronic resource] : IPAM, Los Angeles, CA, February 2016 / edited by Everett W. Howe, Kristin E. Lauter, Judy L. Walker.

Contributor(s): Material type: TextTextSeries: Association for Women in Mathematics Series ; 9Publisher: Cham : Springer International Publishing : Imprint: Springer, 2017Description: XV, 150 p. 8 illus., 2 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319639314
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 516.35 23
LOC classification:
  • QA564-609
Online resources:
Contents:
1. Representations of the Multicast Network Problem -- 2. Hypersurfaces in weighted projective spaces over finite fields with applications to coding theory -- 3. Isogenies for point counting on genus two hyperelliptic curves with maximal real multiplication -- 4. Locally recoverable codes from algebraic curves and surfaces -- 5. Variations of the McEliece Cryptosystem.
In: Springer eBooksSummary: Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this volume. Researchers and graduate-level students interested in the interactions between algebraic geometry and both coding theory and cryptography will find this volume valuable.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

1. Representations of the Multicast Network Problem -- 2. Hypersurfaces in weighted projective spaces over finite fields with applications to coding theory -- 3. Isogenies for point counting on genus two hyperelliptic curves with maximal real multiplication -- 4. Locally recoverable codes from algebraic curves and surfaces -- 5. Variations of the McEliece Cryptosystem.

Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this volume. Researchers and graduate-level students interested in the interactions between algebraic geometry and both coding theory and cryptography will find this volume valuable.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in