Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Fibonacci’s De Practica Geometrie [electronic resource] / edited by Barnabas Hughes.

Contributor(s): Material type: TextTextSeries: Sources and Studies in the History of Mathematics and Physical SciencesPublisher: New York, NY : Springer New York, 2008Description: XXXVI, 412 p. 416 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387729312
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 510.9 23
LOC classification:
  • QA21-27
Online resources:
Contents:
Measuring Areas of Rectangular Fields -- Finding Roots of Numbers -- Measuring All Kinds of Fields -- Dividing Fields Among Partners -- Finding Cube Roots -- Finding Dimensions of Bodies -- Measuring Heights, Depths, and Longitude of Planets -- Geometric Subtleties.
In: Springer eBooksSummary: Leonardo da Pisa, perhaps better known as Fibonacci (ca. 1170 - ca. 1240), selected the most useful parts of Greco-Arabic geometry for the book known as De practica geometrie. Beginning with the definitions and constructions found early on in Euclid's Elements, Fibonacci instructed his reader how to compute with Pisan units of measure, find square and cube roots, determine dimensions of both rectilinear and curved surfaces and solids, work with tables for indirect measurement, and perhaps finally fire the imagination of builders with analyses of pentagons and decagons. His work exceeded what readers would expect for the topic. Practical Geometry is the name of the craft for medieval landmeasurers, otherwise known as surveyors in modern times. Fibonacci wrote De practica geometrie for these artisans, a fitting complement to Liber abbaci. He had been at work on the geometry project for some time when a friend encouraged him to complete the task, which he did, going beyond the merely practical, as he remarked, "Some parts are presented according to geometric demonstrations, other parts in dimensions after a lay fashion, with which they wish to engage according to the more common practice." This translation offers a reconstruction of De practica geometrie as the author judges Fibonacci wrote it. In order to appreciate what Fibonacci created, the author considers his command of Arabic, his schooling, and the resources available to him. To these are added the authors own views on translation and remarks about early Renaissance Italian translations. A bibliography of primary and secondary resources follows the translation, completed by an index of names and special words.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Measuring Areas of Rectangular Fields -- Finding Roots of Numbers -- Measuring All Kinds of Fields -- Dividing Fields Among Partners -- Finding Cube Roots -- Finding Dimensions of Bodies -- Measuring Heights, Depths, and Longitude of Planets -- Geometric Subtleties.

Leonardo da Pisa, perhaps better known as Fibonacci (ca. 1170 - ca. 1240), selected the most useful parts of Greco-Arabic geometry for the book known as De practica geometrie. Beginning with the definitions and constructions found early on in Euclid's Elements, Fibonacci instructed his reader how to compute with Pisan units of measure, find square and cube roots, determine dimensions of both rectilinear and curved surfaces and solids, work with tables for indirect measurement, and perhaps finally fire the imagination of builders with analyses of pentagons and decagons. His work exceeded what readers would expect for the topic. Practical Geometry is the name of the craft for medieval landmeasurers, otherwise known as surveyors in modern times. Fibonacci wrote De practica geometrie for these artisans, a fitting complement to Liber abbaci. He had been at work on the geometry project for some time when a friend encouraged him to complete the task, which he did, going beyond the merely practical, as he remarked, "Some parts are presented according to geometric demonstrations, other parts in dimensions after a lay fashion, with which they wish to engage according to the more common practice." This translation offers a reconstruction of De practica geometrie as the author judges Fibonacci wrote it. In order to appreciate what Fibonacci created, the author considers his command of Arabic, his schooling, and the resources available to him. To these are added the authors own views on translation and remarks about early Renaissance Italian translations. A bibliography of primary and secondary resources follows the translation, completed by an index of names and special words.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in