Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model [electronic resource] / by Makoto Katori.

By: Contributor(s): Material type: TextTextSeries: SpringerBriefs in Mathematical Physics ; 11Publisher: Singapore : Springer Singapore : Imprint: Springer, 2016Edition: 1st ed. 2016Description: X, 141 p. 16 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789811002755
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 530.15 23
LOC classification:
  • QA401-425
  • QC19.2-20.85
Online resources:
Contents:
Preface -- 1 Bessel Process -- 2 Schramm-Loewner Evolution (SLE) -- 3 Dyson Model -- References -- Solutions -- Index.
In: Springer eBooksSummary: The purpose of this book is to introduce two recent topics in mathematical physics and probability theory: the Schramm–Loewner evolution (SLE) and interacting particle systems related to random matrix theory. A typical example of the latter systems is Dyson's Brownian motion (BM) model. The SLE and Dyson's BM model may be considered as "children" of the Bessel process with parameter D, BES(D), and the SLE and Dyson's BM model as "grandchildren" of BM. In Chap. 1 the parenthood of BM in diffusion processes is clarified and BES(D) is defined for any D ≥ 1. Dependence of the BES(D) path on its initial value is represented by the Bessel flow. In Chap. 2 SLE is introduced as a complexification of BES(D). Rich mathematics and physics involved in SLE are due to the nontrivial dependence of the Bessel flow on D. From a result for the Bessel flow, Cardy's formula in Carleson's form is derived for SLE. In Chap. 3 Dyson's BM model with parameter β is introduced as a multivariate extension of BES(D) with the relation D = β + 1. The book concentrates on the case where β = 2 and calls this case simply the Dyson model. The Dyson model inherits the two aspects of BES(3); hence it has very strong solvability. That is, the process is proved to be determinantal in the sense that all spatio-temporal correlation functions are given by determinants, and all of them are controlled by a single function called the correlation kernel. From the determinantal structure of the Dyson model, the Tracy–Widom distribution is derived. .
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Preface -- 1 Bessel Process -- 2 Schramm-Loewner Evolution (SLE) -- 3 Dyson Model -- References -- Solutions -- Index.

The purpose of this book is to introduce two recent topics in mathematical physics and probability theory: the Schramm–Loewner evolution (SLE) and interacting particle systems related to random matrix theory. A typical example of the latter systems is Dyson's Brownian motion (BM) model. The SLE and Dyson's BM model may be considered as "children" of the Bessel process with parameter D, BES(D), and the SLE and Dyson's BM model as "grandchildren" of BM. In Chap. 1 the parenthood of BM in diffusion processes is clarified and BES(D) is defined for any D ≥ 1. Dependence of the BES(D) path on its initial value is represented by the Bessel flow. In Chap. 2 SLE is introduced as a complexification of BES(D). Rich mathematics and physics involved in SLE are due to the nontrivial dependence of the Bessel flow on D. From a result for the Bessel flow, Cardy's formula in Carleson's form is derived for SLE. In Chap. 3 Dyson's BM model with parameter β is introduced as a multivariate extension of BES(D) with the relation D = β + 1. The book concentrates on the case where β = 2 and calls this case simply the Dyson model. The Dyson model inherits the two aspects of BES(3); hence it has very strong solvability. That is, the process is proved to be determinantal in the sense that all spatio-temporal correlation functions are given by determinants, and all of them are controlled by a single function called the correlation kernel. From the determinantal structure of the Dyson model, the Tracy–Widom distribution is derived. .

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in