Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Pancyclic and Bipancyclic Graphs [electronic resource] / by John C. George, Abdollah Khodkar, W.D. Wallis.

By: Contributor(s): Material type: TextTextSeries: SpringerBriefs in MathematicsPublisher: Cham : Springer International Publishing : Imprint: Springer, 2016Description: XII, 108 p. 64 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319319513
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 511.5 23
LOC classification:
  • QA166-166.247
Online resources:
Contents:
1.Graphs -- 2. Degrees and Hamiltoneity -- 3. Pancyclicity -- 4. Minimal Pancyclicity -- 5. Uniquely Pancyclic Graphs -- 6. Bipancyclic Graphs -- 7. Uniquely Bipancyclic Graphs -- 8. Minimal Bipancyclicity -- References. .
In: Springer eBooksSummary: This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation. The following questions are highlighted through the book: - What is the smallest possible number of edges in a pancyclic graph with v vertices? - When do pancyclic graphs exist with exactly one cycle of every possible length? - What is the smallest possible number of edges in a bipartite graph with v vertices? - When do bipartite graphs exist with exactly one cycle of every possible length?
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1778
Total holds: 0

1.Graphs -- 2. Degrees and Hamiltoneity -- 3. Pancyclicity -- 4. Minimal Pancyclicity -- 5. Uniquely Pancyclic Graphs -- 6. Bipancyclic Graphs -- 7. Uniquely Bipancyclic Graphs -- 8. Minimal Bipancyclicity -- References. .

This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation. The following questions are highlighted through the book: - What is the smallest possible number of edges in a pancyclic graph with v vertices? - When do pancyclic graphs exist with exactly one cycle of every possible length? - What is the smallest possible number of edges in a bipartite graph with v vertices? - When do bipartite graphs exist with exactly one cycle of every possible length?

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in