Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Stochastic Ordinary and Stochastic Partial Differential Equations [electronic resource] : Transition from Microscopic to Macroscopic Equations / by Peter Kotelenez.

By: Contributor(s): Material type: TextTextSeries: Stochastic Modelling and Applied Probability ; 58Publisher: New York, NY : Springer New York, 2008Description: X, 459 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387743172
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515 23
LOC classification:
  • QA299.6-433
Online resources:
Contents:
From Microscopic Dynamics to Mesoscopic Kinematics -- Heuristics: Microscopic Model and Space—Time Scales -- Deterministic Dynamics in a Lattice Model and a Mesoscopic (Stochastic) Limit -- Proof of the Mesoscopic Limit Theorem -- Mesoscopic A: Stochastic Ordinary Differential Equations -- Stochastic Ordinary Differential Equations: Existence, Uniqueness, and Flows Properties -- Qualitative Behavior of Correlated Brownian Motions -- Proof of the Flow Property -- Comments on SODEs: A Comparison with Other Approaches -- Mesoscopic B: Stochastic Partial Differential Equations -- Stochastic Partial Differential Equations: Finite Mass and Extensions -- Stochastic Partial Differential Equations: Infinite Mass -- Stochastic Partial Differential Equations:Homogeneous and Isotropic Solutions -- Proof of Smoothness, Integrability, and Itô’s Formula -- Proof of Uniqueness -- Comments on Other Approaches to SPDEs -- Macroscopic: Deterministic Partial Differential Equations -- Partial Differential Equations as a Macroscopic Limit -- General Appendix.
In: Springer eBooksSummary: This book provides the first rigorous derivation of mesoscopic and macroscopic equations from a deterministic system of microscopic equations. The microscopic equations are cast in the form of a deterministic (Newtonian) system of coupled nonlinear oscillators for N large particles and infinitely many small particles. The mesoscopic equations are stochastic ordinary differential equations (SODEs) and stochastic partial differential equatuions (SPDEs), and the macroscopic limit is described by a parabolic partial differential equation. A detailed analysis of the SODEs and (quasi-linear) SPDEs is presented. Semi-linear (parabolic) SPDEs are represented as first order stochastic transport equations driven by Stratonovich differentials. The time evolution of correlated Brownian motions is shown to be consistent with the depletion phenomena experimentally observed in colloids. A covariance analysis of the random processes and random fields as well as a review section of various approaches to SPDEs are also provided. An extensive appendix makes the book accessible to both scientists and graduate students who may not be specialized in stochastic analysis. Probabilists, mathematical and theoretical physicists as well as mathematical biologists and their graduate students will find this book useful. Peter Kotelenez is a professor of mathematics at Case Western Reserve University in Cleveland, Ohio.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

From Microscopic Dynamics to Mesoscopic Kinematics -- Heuristics: Microscopic Model and Space—Time Scales -- Deterministic Dynamics in a Lattice Model and a Mesoscopic (Stochastic) Limit -- Proof of the Mesoscopic Limit Theorem -- Mesoscopic A: Stochastic Ordinary Differential Equations -- Stochastic Ordinary Differential Equations: Existence, Uniqueness, and Flows Properties -- Qualitative Behavior of Correlated Brownian Motions -- Proof of the Flow Property -- Comments on SODEs: A Comparison with Other Approaches -- Mesoscopic B: Stochastic Partial Differential Equations -- Stochastic Partial Differential Equations: Finite Mass and Extensions -- Stochastic Partial Differential Equations: Infinite Mass -- Stochastic Partial Differential Equations:Homogeneous and Isotropic Solutions -- Proof of Smoothness, Integrability, and Itô’s Formula -- Proof of Uniqueness -- Comments on Other Approaches to SPDEs -- Macroscopic: Deterministic Partial Differential Equations -- Partial Differential Equations as a Macroscopic Limit -- General Appendix.

This book provides the first rigorous derivation of mesoscopic and macroscopic equations from a deterministic system of microscopic equations. The microscopic equations are cast in the form of a deterministic (Newtonian) system of coupled nonlinear oscillators for N large particles and infinitely many small particles. The mesoscopic equations are stochastic ordinary differential equations (SODEs) and stochastic partial differential equatuions (SPDEs), and the macroscopic limit is described by a parabolic partial differential equation. A detailed analysis of the SODEs and (quasi-linear) SPDEs is presented. Semi-linear (parabolic) SPDEs are represented as first order stochastic transport equations driven by Stratonovich differentials. The time evolution of correlated Brownian motions is shown to be consistent with the depletion phenomena experimentally observed in colloids. A covariance analysis of the random processes and random fields as well as a review section of various approaches to SPDEs are also provided. An extensive appendix makes the book accessible to both scientists and graduate students who may not be specialized in stochastic analysis. Probabilists, mathematical and theoretical physicists as well as mathematical biologists and their graduate students will find this book useful. Peter Kotelenez is a professor of mathematics at Case Western Reserve University in Cleveland, Ohio.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in