Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Reduced Basis Methods for Partial Differential Equations [electronic resource] : An Introduction / by Alfio Quarteroni, Andrea Manzoni, Federico Negri.

By: Contributor(s): Material type: TextTextSeries: La Matematica per il 3+2 ; 92Publisher: Cham : Springer International Publishing : Imprint: Springer, 2016Description: XI, 296 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319154312
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515.353 23
LOC classification:
  • QA370-380
Online resources:
Contents:
1 Introduction -- 2 Representative problems: analysis and (high-fidelity) approximation -- 3 Getting parameters into play -- 4 RB method: basic principle, basic properties -- 5 Construction of reduced basis spaces -- 6 Algebraic and geometrical structure -- 7 RB method in actions -- 8 Extension to nonaffine problems -- 9 Extension to nonlinear problems -- 10 Reduction and control: a natural interplay -- 11 Further extensions -- 12 Appendix A Elements of functional analysis.
In: Springer eBooksSummary: This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1824
Total holds: 0

1 Introduction -- 2 Representative problems: analysis and (high-fidelity) approximation -- 3 Getting parameters into play -- 4 RB method: basic principle, basic properties -- 5 Construction of reduced basis spaces -- 6 Algebraic and geometrical structure -- 7 RB method in actions -- 8 Extension to nonaffine problems -- 9 Extension to nonlinear problems -- 10 Reduction and control: a natural interplay -- 11 Further extensions -- 12 Appendix A Elements of functional analysis.

This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in