Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Level one algebraic cusp forms of classical groups of small rank / Gaetan Chenevier and David Renard.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical Society ; v 237, no 1121.Publication details: Providence : American Mathematical Society, 2015.Description: v, 122 p. ; 26 cmISBN:
  • 9781470410940 (pbk. : alk. paper)
Subject(s): DDC classification:
  • 510 23 Am512
Contents:
Chapter 1. Introduction Chapter 2. Polynomial invariants of finite subgroups of compact connected Lie groups Chapter 3. Automorphic representations of classical groups : review of Arthur's results Chapter 4. Determination of $\Pi _{\rm alg}^\bot ({\rm PGL}_n)$ for $n\leq 5$ Chapter 5. Description of $\Pi _{\rm disc}({\rm SO}_7)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_6)$ Chapter 6. Description of $\Pi _{\rm disc}({\rm SO}_9)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_8)$ Chapter 7. Description of $\Pi _{\rm disc}({\rm SO}_8)$ and $\Pi _{\rm alg}^{\rm o}({\rm PGL}_8)$ Chapter 8. Description of $\Pi _{\rm disc}({\rm G}_2)$ Chapter 9. Application to Siegel modular forms Appendix A. Adams-Johnson packets Appendix B. The Langlands group of $\mathbb {Z}$ and Sato-Tate groups Appendix C. Tables Appendix D. The $121$ level $1$ automorphic representations of ${\rm SO}_{25}$ with trivial coefficients Bibliography.
Summary: The authors determine the number of level $1$, polarized, algebraic regular, cuspidal automorphic representations of $\mathrm{GL}_n$ over $\mathbb Q$ of any given infinitesimal character, for essentially all $n \leq 8$.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books ISI Library, Kolkata 510 Am512 (Browse shelf(Opens below)) Available 136723
Total holds: 0

Includes bibliographical references.

Chapter 1. Introduction
Chapter 2. Polynomial invariants of finite subgroups of compact connected Lie groups
Chapter 3. Automorphic representations of classical groups : review of Arthur's results
Chapter 4. Determination of $\Pi _{\rm alg}^\bot ({\rm PGL}_n)$ for $n\leq 5$
Chapter 5. Description of $\Pi _{\rm disc}({\rm SO}_7)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_6)$
Chapter 6. Description of $\Pi _{\rm disc}({\rm SO}_9)$ and $\Pi _{\rm alg}^{\rm s}({\rm PGL}_8)$
Chapter 7. Description of $\Pi _{\rm disc}({\rm SO}_8)$ and $\Pi _{\rm alg}^{\rm o}({\rm PGL}_8)$
Chapter 8. Description of $\Pi _{\rm disc}({\rm G}_2)$
Chapter 9. Application to Siegel modular forms
Appendix A. Adams-Johnson packets
Appendix B. The Langlands group of $\mathbb {Z}$ and Sato-Tate groups
Appendix C. Tables
Appendix D. The $121$ level $1$ automorphic representations of ${\rm SO}_{25}$ with trivial coefficients
Bibliography.

The authors determine the number of level $1$, polarized, algebraic regular, cuspidal automorphic representations of $\mathrm{GL}_n$ over $\mathbb Q$ of any given infinitesimal character, for essentially all $n \leq 8$.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in