Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Asymptotic Theory of Weakly Dependent Random Processes [electronic resource] / by Emmanuel Rio.

By: Contributor(s): Material type: TextTextSeries: Probability Theory and Stochastic Modelling ; 80Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2017Description: XVIII, 204 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783662543238
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 519.2 23
LOC classification:
  • QA273.A1-274.9
  • QA274-274.9
Online resources:
Contents:
Introduction -- Variance of partial sums -- Algebraic moments. Elementary exponential inequalities -- Maximal inequalities and strong laws -- Central limit theorems -- Coupling and mixing -- Fuk-Nagaev inequalities, applications -- Empirical distribution functions -- Empirical processes indexed by classes of functions -- Irreducible Markov chains -- Appendices -- References -- Index.
In: Springer eBooksSummary: Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended translation of the French edition entitled "Théorie asymptotique des processus aléatoires faiblement dépendants" (Springer, 2000). It will be useful for students and researchers in mathematical statistics, econometrics, probability theory and dynamical systems who are interested in weakly dependent processes.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Introduction -- Variance of partial sums -- Algebraic moments. Elementary exponential inequalities -- Maximal inequalities and strong laws -- Central limit theorems -- Coupling and mixing -- Fuk-Nagaev inequalities, applications -- Empirical distribution functions -- Empirical processes indexed by classes of functions -- Irreducible Markov chains -- Appendices -- References -- Index.

Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended translation of the French edition entitled "Théorie asymptotique des processus aléatoires faiblement dépendants" (Springer, 2000). It will be useful for students and researchers in mathematical statistics, econometrics, probability theory and dynamical systems who are interested in weakly dependent processes.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in