Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Progress in Galois Theory [electronic resource] : Proceedings of John Thompson’s 70th Birthday Conference / edited by Helmut Voelklein, Tanush Shaska.

Contributor(s): Material type: TextTextSeries: Developments in Mathematics ; 12Publisher: Boston, MA : Springer US, 2005Description: X, 168 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387235349
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 512 23
LOC classification:
  • QA150-272
Online resources:
Contents:
Supplementary Thoughts on Symplectic Groups -- Automorphisms of the Modular Curve -- Reducing the Fontaine-Mazur Conjecture to Group Theory -- Relating Two Genus 0 Problems of John Thompson -- Relatively Projective Groups as Absolute Galois Groups -- Invariants of Binary Forms -- Some Classical Views on the Parameters of the Grothendieck-Teichmüller Group -- The Image of a Hurwitz Space Under the Moduli Map -- Very Simple Representations: Variations on a Theme of Clifford.
In: Springer eBooksSummary: A recent trend in the field of Galois theory is to tie the previous theory of curve coverings (mostly of the Riemann sphere) and Hurwitz spaces (moduli spaces for such covers) with the theory of algebraic curves and their moduli spaces. A general survey of this is given in the article by Voelklein. Further exemplifications come in the articles of Guralnick on automorphisms of modular curves in positive characteristic, of Zarhin on the Galois module structure of the 2-division points of hyperelliptic curves and of Krishnamoorthy, Shashka and Voelklein on invariants of genus 2 curves. Abhyankar continues his work on explicit classes of polynomials in characteristic p>0 whose Glaois groups comprise entire families of Lie type groups in characteristic p. In his article, he proves a characterization of sympletic groups required for the identification of the Galois group of certain polynomials. The more abstract aspects come into play when considering the totality of Galois extensions of a given field. This leads to the study of absolute Galois groups and (profinite) fundamental groups. Haran and Jarden present a result on the problem of finding a group-theoretic characterization of absolute Galois groups. In a similar spirit, Boston studies infinite p-extensions of number fields unramified at p and makes a conjecture about a group-theoretic characterization of their Galois groups. He notes connections with the Fontaine-Mazur conjecture, knot theory and quantum field theory. Nakamura continues his work on relationships between the absolute Galois group of the rationals and the Grothendieck-Teichmüller group. Finally, Fried takes us on a tour of places where classical tropics like modular curves and j-line covers connect to the genus zero problems which was the starting point of the Guralnick-Thompson Conjecture. Audience This volume is suitable for graduate students and researchers in the field.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB978
Total holds: 0

Supplementary Thoughts on Symplectic Groups -- Automorphisms of the Modular Curve -- Reducing the Fontaine-Mazur Conjecture to Group Theory -- Relating Two Genus 0 Problems of John Thompson -- Relatively Projective Groups as Absolute Galois Groups -- Invariants of Binary Forms -- Some Classical Views on the Parameters of the Grothendieck-Teichmüller Group -- The Image of a Hurwitz Space Under the Moduli Map -- Very Simple Representations: Variations on a Theme of Clifford.

A recent trend in the field of Galois theory is to tie the previous theory of curve coverings (mostly of the Riemann sphere) and Hurwitz spaces (moduli spaces for such covers) with the theory of algebraic curves and their moduli spaces. A general survey of this is given in the article by Voelklein. Further exemplifications come in the articles of Guralnick on automorphisms of modular curves in positive characteristic, of Zarhin on the Galois module structure of the 2-division points of hyperelliptic curves and of Krishnamoorthy, Shashka and Voelklein on invariants of genus 2 curves. Abhyankar continues his work on explicit classes of polynomials in characteristic p>0 whose Glaois groups comprise entire families of Lie type groups in characteristic p. In his article, he proves a characterization of sympletic groups required for the identification of the Galois group of certain polynomials. The more abstract aspects come into play when considering the totality of Galois extensions of a given field. This leads to the study of absolute Galois groups and (profinite) fundamental groups. Haran and Jarden present a result on the problem of finding a group-theoretic characterization of absolute Galois groups. In a similar spirit, Boston studies infinite p-extensions of number fields unramified at p and makes a conjecture about a group-theoretic characterization of their Galois groups. He notes connections with the Fontaine-Mazur conjecture, knot theory and quantum field theory. Nakamura continues his work on relationships between the absolute Galois group of the rationals and the Grothendieck-Teichmüller group. Finally, Fried takes us on a tour of places where classical tropics like modular curves and j-line covers connect to the genus zero problems which was the starting point of the Guralnick-Thompson Conjecture. Audience This volume is suitable for graduate students and researchers in the field.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in