Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

A Discrete Hilbert Transform with Circle Packings [electronic resource] / by Dominik Volland.

By: Contributor(s): Material type: TextTextSeries: BestMastersPublisher: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2017Description: XI, 102 p. 27 illus., 10 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783658204570
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515 23
LOC classification:
  • QA299.6-433
Online resources:
Contents:
Hardy Spaces and Riemann-Hilbert Problems -- The Hilbert Transform in the Classical Setting -- Circle Packings -- Discrete Boundary Value Problems -- Discrete Hilbert Transform -- Numerical Results of Test Computations -- Properties of the Discrete Transform.
In: Springer eBooksSummary: Dominik Volland studies the construction of a discrete counterpart to the Hilbert transform in the realm of a nonlinear discrete complex analysis given by circle packings. The Hilbert transform is closely related to Riemann-Hilbert problems which have been studied in the framework of circle packings by E. Wegert and co-workers since 2009. The author demonstrates that the discrete Hilbert transform is well-defined in this framework by proving a conjecture on discrete problems formulated by Wegert. Moreover, he illustrates its properties by carefully chosen numerical examples. Basic knowledge of complex analysis and functional analysis is recommended. Contents Hardy Spaces and Riemann-Hilbert Problems The Hilbert Transform in the Classical Setting Circle Packings Discrete Boundary Value Problems Discrete Hilbert Transform Numerical Results of Test Computations Properties of the Discrete Transform Target Groups Lecturers and students of mathematics who are interested in circle packings and/or discrete Riemann-Hilbert problems The Author Dominik Volland currently attends his postgraduate studies in the master’s program on computational science and engineering at the Technical University of Munich (TUM). .
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Hardy Spaces and Riemann-Hilbert Problems -- The Hilbert Transform in the Classical Setting -- Circle Packings -- Discrete Boundary Value Problems -- Discrete Hilbert Transform -- Numerical Results of Test Computations -- Properties of the Discrete Transform.

Dominik Volland studies the construction of a discrete counterpart to the Hilbert transform in the realm of a nonlinear discrete complex analysis given by circle packings. The Hilbert transform is closely related to Riemann-Hilbert problems which have been studied in the framework of circle packings by E. Wegert and co-workers since 2009. The author demonstrates that the discrete Hilbert transform is well-defined in this framework by proving a conjecture on discrete problems formulated by Wegert. Moreover, he illustrates its properties by carefully chosen numerical examples. Basic knowledge of complex analysis and functional analysis is recommended. Contents Hardy Spaces and Riemann-Hilbert Problems The Hilbert Transform in the Classical Setting Circle Packings Discrete Boundary Value Problems Discrete Hilbert Transform Numerical Results of Test Computations Properties of the Discrete Transform Target Groups Lecturers and students of mathematics who are interested in circle packings and/or discrete Riemann-Hilbert problems The Author Dominik Volland currently attends his postgraduate studies in the master’s program on computational science and engineering at the Technical University of Munich (TUM). .

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in