Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Completeness Theory for Propositional Logics [electronic resource] / by Witold A. Pogorzelski, Piotr Wojtylak.

By: Contributor(s): Material type: TextTextSeries: Studies in Universal LogicPublisher: Basel : Birkhäuser Basel, 2008Description: VIII, 178 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783764385187
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 511.3 23
LOC classification:
  • QA8.9-10.3
Online resources:
Contents:
Introduction -- 1. Basic notions: Propositional languages -- Abstract algebras -- Preliminary lattice-theoretical notions -- Propositional logics -- Brief exposition of the most important propositional logics -- 2. Semantic methods in propositional logic: Preordered sets -- Preordered algebras -- Logical matrices -- Adequacy -- Propositional logic and lattice theory -- 3. Completeness of propositional logic: Generalized completeness -- Post-completeness -- The problem of uniqueness of Lindenbaum extensions -- Some related concepts -- 4. Characterization of propositional connectives: Cn-definitions -- The system (D) -- Variants -- The system (I) -- Classical logic -- Appendix: The fundamental metatheorem for the classical propositional logic -- A proof system for the classical logic.
In: Springer eBooksSummary: Completeness is one of the most important notions in logic and the foundations of mathematics. Many variants of the notion have been de?ned in literature. We shallconcentrateonthesevariants,andaspects,of completenesswhicharede?ned in propositional logic. Completeness means the possibility of getting all correct and reliable sc- mata of inference by use of logical methods. The word ‘all’, seemingly neutral, is here a crucial point of distinction. Assuming the de?nition as given by E. Post we get, say, a global notion of completeness in which the reliability refers only to syntactic means of logic and outside the correct schemata of inference there are only inconsistent ones. It is impossible, however, to leave aside local aspects of the notion when we want to make it relative to some given or invented notion of truth. Completeness understood in this sense is the adequacy of logic in relation to some semantics, and the change of the logic is accompanied by the change of its semantics. Such completeness was e?ectively used by J. ?ukasiewicz and investigated in general terms by A. Tarski and A. Lindenbaum, which gave strong foundations for research in logic and, in particular, for the notion of consequence operation determined by a logical system. The choice of logical means, by use of which we intend to represent logical inferences, is also important. Most of the de?nitions and results in completeness theory were originally developed in terms of propositional logic. Propositional formal systems ?nd many applications in logic and theoretical computer science.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Introduction -- 1. Basic notions: Propositional languages -- Abstract algebras -- Preliminary lattice-theoretical notions -- Propositional logics -- Brief exposition of the most important propositional logics -- 2. Semantic methods in propositional logic: Preordered sets -- Preordered algebras -- Logical matrices -- Adequacy -- Propositional logic and lattice theory -- 3. Completeness of propositional logic: Generalized completeness -- Post-completeness -- The problem of uniqueness of Lindenbaum extensions -- Some related concepts -- 4. Characterization of propositional connectives: Cn-definitions -- The system (D) -- Variants -- The system (I) -- Classical logic -- Appendix: The fundamental metatheorem for the classical propositional logic -- A proof system for the classical logic.

Completeness is one of the most important notions in logic and the foundations of mathematics. Many variants of the notion have been de?ned in literature. We shallconcentrateonthesevariants,andaspects,of completenesswhicharede?ned in propositional logic. Completeness means the possibility of getting all correct and reliable sc- mata of inference by use of logical methods. The word ‘all’, seemingly neutral, is here a crucial point of distinction. Assuming the de?nition as given by E. Post we get, say, a global notion of completeness in which the reliability refers only to syntactic means of logic and outside the correct schemata of inference there are only inconsistent ones. It is impossible, however, to leave aside local aspects of the notion when we want to make it relative to some given or invented notion of truth. Completeness understood in this sense is the adequacy of logic in relation to some semantics, and the change of the logic is accompanied by the change of its semantics. Such completeness was e?ectively used by J. ?ukasiewicz and investigated in general terms by A. Tarski and A. Lindenbaum, which gave strong foundations for research in logic and, in particular, for the notion of consequence operation determined by a logical system. The choice of logical means, by use of which we intend to represent logical inferences, is also important. Most of the de?nitions and results in completeness theory were originally developed in terms of propositional logic. Propositional formal systems ?nd many applications in logic and theoretical computer science.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in