Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Numerical solution of Variational Inequalities by Adaptive Finite Elements [electronic resource] / by Franz-Theo Suttmeier.

By: Contributor(s): Material type: TextTextSeries: Advances in Numerical MathematicsPublisher: Wiesbaden : Vieweg+Teubner Verlag, 2008Description: X, 161 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783834895462
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 518 23
LOC classification:
  • QA297-299.4
Online resources:
Contents:
Models in elasto-plasticity -- The dual-weighted-residual method -- Extensions to stabilised schemes -- Obstacle problem -- Signorini’s problem -- Strang’s problem -- General concept -- Lagrangian formalism -- Obstacle problem revisited -- Variational inequalities of second kind -- Time-dependent problems -- Applications -- Iterative Algorithms -- Conclusion.
In: Springer eBooksSummary: Franz-Theo Suttmeier describes a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method) which is based on a variational formulation of the problem and uses global duality arguments for deriving weighted a posteriori error estimates with respect to arbitrary functionals of the error. In these estimates local residuals of the computed solution are multiplied by sensitivity factors which are obtained from a numerically computed dual solution. The resulting local error indicators are used in a feed-back process for generating economical meshes which are tailored according to the particular goal of the computation. This method is developed here for several model problems. Based on these examples, a general concept is proposed, which provides a systematic way of adaptive error control for problems stated in form of variational inequalities.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Models in elasto-plasticity -- The dual-weighted-residual method -- Extensions to stabilised schemes -- Obstacle problem -- Signorini’s problem -- Strang’s problem -- General concept -- Lagrangian formalism -- Obstacle problem revisited -- Variational inequalities of second kind -- Time-dependent problems -- Applications -- Iterative Algorithms -- Conclusion.

Franz-Theo Suttmeier describes a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method) which is based on a variational formulation of the problem and uses global duality arguments for deriving weighted a posteriori error estimates with respect to arbitrary functionals of the error. In these estimates local residuals of the computed solution are multiplied by sensitivity factors which are obtained from a numerically computed dual solution. The resulting local error indicators are used in a feed-back process for generating economical meshes which are tailored according to the particular goal of the computation. This method is developed here for several model problems. Based on these examples, a general concept is proposed, which provides a systematic way of adaptive error control for problems stated in form of variational inequalities.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in