Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Internet-scale pattern recognition : new techniques for voluminous data sets and data clouds / Anang Hudaya Muhamad Amin, Asad I. Khan and Benny B. Nasution.

By: Contributor(s): Material type: TextTextPublication details: Boca Raton : CRC Press, c2013.Description: xviii, 179 p. : ill. ; 24 cmISBN:
  • 9781466510968 (hardback)
Subject(s): DDC classification:
  • 006.312 23 M952
Contents:
Preface -- Acknowledgments -- About the Authors -- I. Recognition: A New Perspective -- 1. Introduction -- 1.1. As We See, We Learn -- 1.2. Recognition at a Large Scale -- 1.3. Computational Intelligence Approach for Pattern Recognition -- 1.4. Scalability in Pattern Recognition -- 1.4.1. Common Barriers -- 1.4.2. Possible Solutions -- 1.4.3. Distributed Computing Solution for Scalability of PR Schemes -- 2. Distributed Approach for Pattern Recognition -- 2.1. Scalability of Neural Network Approaches -- 2.1.1. Pattern Storage Capacity -- 2.1.2. Inter-Neuron Communication Frequency -- 2.2. Key Components of DPR -- 2.2.1. Learning Mechanism -- 2.2.2. Processing Approach -- 2.2.3. Training Procedure -- 2.3. System Approaches -- 2.4. Pattern Distribution Techniques -- 2.4.1. Subpattern Distribution -- 2.4.2. Pattern Set Distribution -- 2.5. Current DPR Schemes -- 2.5.1. Graph Neuron -- 2.5.2. Hierarchical Graph Neuron -- 2.5.3. Distributed Hierarchical Graph Neuron -- 2.6. Resource Considerations for DPR Implementations -- 2.6.1. Resource-Aware Approach -- 2.6.2. Message-Passing Model in DPR -- II. Evolution of Internet-Scale Recognition -- 3. One-Shot Learning Considerations -- 3.1. One-Shot Learning Graph Neuron (GN) Scheme -- 3.1.1. Pattern Representation -- 3.1.2. Recognition Procedure -- 3.2. One-Shot Learning Model -- 3.2.1. Bias Array Design for Pattern Memorization -- 3.2.2. Collaborative-Comparison Learning Technique -- 3.3. GN Complexity Estimation -- 3.4. Graph Neuron Limitations -- 3.5. Significance of One-Shot Learning -- 4. Hierarchical Model for Pattern Recognition -- 4.1. Evolution of One-Shot Learning: The Hierarchical Approach -- 4.1.1. Solution to Crosstalk Problem -- 4.1.2. Computational Design for a Hierarchical One-Shot Learning DPR Scheme -- 4.1.3. HGN Recognition Procedure -- 4.2. Complexity and Scalability of Hierarchical DPR Scheme -- 4.2.1. Complexity Estimation -- 4.2.2. Scalability in HGN Approach -- 4.3. Reducing Hierarchical Complexity: A Distributed Approach -- 4.3.1. Distributed Neurons of HGN Network -- 4.3.2. Distributed HGN Approach -- 4.4. Design Evaluation for Distributed DPR Approach -- 4.4.1. Non-Uniform Distribution -- 4.4.2. Uniform Distribution -- 5. Recognition via Divide-and-Distribute Approach -- 5.1. Divide-and-Distribute Approach for One-Shot Learning S-PR Scheme -- 5.1.1. Associative Memory (AM) Concept in Pattern Recognition -- 5.1.2. DHGN Computational Design -- 5.1.3. Dual-Phase Recognition Procedure -- 5.2. Dimensionality Reduction in Pattern Pre-Processing -- 5.2.1. Structural Reduction -- 5.2.2. Content Reduction -- 5.3. Remarks on DHGN DPR Scheme -- III. Systems and Tools -- 6. Internet-Scale Applications Development -- 6.1. Distributed Computing Models for IS-PR -- 6.1.1. Commodity Grid (CoG) -- 6.1.2. Cloud Computing -- 6.1.3. Peer-to-Peer (P2P) Computing -- 6.2. Parallel Programming Techniques -- 6.2.1. Message-Passing Scheme -- 6.2.2. GPU Programming -- 6.3. From Coding to Applications -- IV. Implementations and Applications -- 7. Multi-Feature Classifications for Complex Data -- 7.1. Data Features for Pattern Recognition -- 7.2. Distributed Multi-Feature Recognition -- 7.2.1. Conceptual Design and Implementation -- 7.2.2. Complexity Estimation -- 7.3. Handwritten Object Classification with Multiple Features -- 7.3.1. Handwritten Object -- 7.3.2. Classification Procedures -- 7.4. Distributed Multi-Feature Recognition Perspective -- 8. Pattern Recognition within Coarse-Grained Networks -- 8.1. Network Granularity Considerations -- 8.1.1. DHGN Configurations for Adaptive Granularity -- 8.1.2. DHGN Commodity Grid Framework -- 8.2. Face Recognition Using the Multi-Feature DPR Approach -- 8.2.1. Color and Spatio-Structural Features Consideration -- 8.3. Distributed Data Management within Cloud Computing -- 8.3.1. Cloud Data Access Scheme -- 8.3.2. DHGN Approach for Cloud Data Access -- 8.4. Adaptive Recognition: A Different Perspective -- 9. Event Detection within Pine-Grained Networks -- 9.1. Distributed Event Detection Scheme for Wireless Sensor Networks -- 9.1.1. WSN Event Detection -- 9.1.2. DHGN-WSN Event Detection Configuration -- 9.1.3. Dimensionality Reduction in Sensory Data -- 9.1.4. Event Classification -- 9.1.5. Performance Metrics: Memory Utilization -- 9.1.6. Spatio-Temporal Analysis of Event Data -- 9.2. Integrated Grid-Sensor Scheme for Structural Analysis -- 9.2.1. Integrated Grid-Sensor Network Framework for Structural Engineering -- 9.2.2. Structural Analysis, Design, and Monitoring Applications -- 9.3. Distributed Event Detection: A Lightweight Approach -- V. The Way Forward -- 10. Recognition: The Future and Beyond -- 10.1. Medium of Change -- 10.2. Future of Internet-Scale PR -- 10.3. Making a Case -- 10.3.1. Changing the Fundamentals -- 10.3.2. Recognition as Commodity -- Bibliography -- Index.
Summary: "This cutting-edge reference outlines the underlying theory and principles of efficient and effective distributed pattern recognition involving one-shot learning and in-network processing for different types of applications, including multimedia retrieval systems and event detection over different network environments. Investigating one-shot learning and in-network processing as complementary mechanisms for efficient and accurate distributed pattern analyses, it presents the technical aspects related to the development of scalable pattern recognition using a number of contemporary application development tools. It also considers scalability of pattern recognition schemes when dealing with such data"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books ISI Library, Kolkata 006.312 M952 (Browse shelf(Opens below)) Available 135319
Total holds: 0

Includes bibliographical references (p. 167-175) and index.

Preface --
Acknowledgments --
About the Authors --
I. Recognition: A New Perspective --
1. Introduction --
1.1. As We See, We Learn --
1.2. Recognition at a Large Scale --
1.3. Computational Intelligence Approach for Pattern Recognition --
1.4. Scalability in Pattern Recognition --
1.4.1. Common Barriers --
1.4.2. Possible Solutions --
1.4.3. Distributed Computing Solution for Scalability of PR Schemes --
2. Distributed Approach for Pattern Recognition --
2.1. Scalability of Neural Network Approaches --
2.1.1. Pattern Storage Capacity --
2.1.2. Inter-Neuron Communication Frequency --
2.2. Key Components of DPR --
2.2.1. Learning Mechanism --
2.2.2. Processing Approach --
2.2.3. Training Procedure --
2.3. System Approaches --
2.4. Pattern Distribution Techniques --
2.4.1. Subpattern Distribution --
2.4.2. Pattern Set Distribution --
2.5. Current DPR Schemes --
2.5.1. Graph Neuron --
2.5.2. Hierarchical Graph Neuron --
2.5.3. Distributed Hierarchical Graph Neuron --
2.6. Resource Considerations for DPR Implementations --
2.6.1. Resource-Aware Approach --
2.6.2. Message-Passing Model in DPR --
II. Evolution of Internet-Scale Recognition --
3. One-Shot Learning Considerations --
3.1. One-Shot Learning Graph Neuron (GN) Scheme --
3.1.1. Pattern Representation --
3.1.2. Recognition Procedure --
3.2. One-Shot Learning Model --
3.2.1. Bias Array Design for Pattern Memorization --
3.2.2. Collaborative-Comparison Learning Technique --
3.3. GN Complexity Estimation --
3.4. Graph Neuron Limitations --
3.5. Significance of One-Shot Learning --
4. Hierarchical Model for Pattern Recognition --
4.1. Evolution of One-Shot Learning: The Hierarchical Approach --
4.1.1. Solution to Crosstalk Problem --
4.1.2. Computational Design for a Hierarchical One-Shot Learning DPR Scheme --
4.1.3. HGN Recognition Procedure --
4.2. Complexity and Scalability of Hierarchical DPR Scheme --
4.2.1. Complexity Estimation --
4.2.2. Scalability in HGN Approach --
4.3. Reducing Hierarchical Complexity: A Distributed Approach --
4.3.1. Distributed Neurons of HGN Network --
4.3.2. Distributed HGN Approach --
4.4. Design Evaluation for Distributed DPR Approach --
4.4.1. Non-Uniform Distribution --
4.4.2. Uniform Distribution --
5. Recognition via Divide-and-Distribute Approach --
5.1. Divide-and-Distribute Approach for One-Shot Learning
S-PR Scheme --
5.1.1. Associative Memory (AM) Concept in Pattern Recognition --
5.1.2. DHGN Computational Design --
5.1.3. Dual-Phase Recognition Procedure --
5.2. Dimensionality Reduction in Pattern Pre-Processing --
5.2.1. Structural Reduction --
5.2.2. Content Reduction --
5.3. Remarks on DHGN DPR Scheme --
III. Systems and Tools --
6. Internet-Scale Applications Development --
6.1. Distributed Computing Models for IS-PR --
6.1.1. Commodity Grid (CoG) --
6.1.2. Cloud Computing --
6.1.3. Peer-to-Peer (P2P) Computing --
6.2. Parallel Programming Techniques --
6.2.1. Message-Passing Scheme --
6.2.2. GPU Programming --
6.3. From Coding to Applications --
IV. Implementations and Applications --
7. Multi-Feature Classifications for Complex Data --
7.1. Data Features for Pattern Recognition --
7.2. Distributed Multi-Feature Recognition --
7.2.1. Conceptual Design and Implementation --
7.2.2. Complexity Estimation --
7.3. Handwritten Object Classification with Multiple Features --
7.3.1. Handwritten Object --
7.3.2. Classification Procedures --
7.4. Distributed Multi-Feature Recognition Perspective --
8. Pattern Recognition within Coarse-Grained Networks --
8.1. Network Granularity Considerations --
8.1.1. DHGN Configurations for Adaptive Granularity --
8.1.2. DHGN Commodity Grid Framework --
8.2. Face Recognition Using the Multi-Feature DPR Approach --
8.2.1. Color and Spatio-Structural Features Consideration --
8.3. Distributed Data Management within Cloud Computing --
8.3.1. Cloud Data Access Scheme --
8.3.2. DHGN Approach for Cloud Data Access --
8.4. Adaptive Recognition: A Different Perspective --
9. Event Detection within Pine-Grained Networks --
9.1. Distributed Event Detection Scheme for Wireless Sensor Networks --
9.1.1. WSN Event Detection --
9.1.2. DHGN-WSN Event Detection Configuration --
9.1.3. Dimensionality Reduction in Sensory Data --
9.1.4. Event Classification --
9.1.5. Performance Metrics: Memory Utilization --
9.1.6. Spatio-Temporal Analysis of Event Data --
9.2. Integrated Grid-Sensor Scheme for Structural Analysis --
9.2.1. Integrated Grid-Sensor Network Framework for Structural Engineering --
9.2.2. Structural Analysis, Design, and Monitoring Applications --
9.3. Distributed Event Detection: A Lightweight Approach --
V. The Way Forward --
10. Recognition: The Future and Beyond --
10.1. Medium of Change --
10.2. Future of Internet-Scale PR --
10.3. Making a Case --
10.3.1. Changing the Fundamentals --
10.3.2. Recognition as Commodity --
Bibliography --
Index.

"This cutting-edge reference outlines the underlying theory and principles of efficient and effective distributed pattern recognition involving one-shot learning and in-network processing for different types of applications, including multimedia retrieval systems and event detection over different network environments. Investigating one-shot learning and in-network processing as complementary mechanisms for efficient and accurate distributed pattern analyses, it presents the technical aspects related to the development of scalable pattern recognition using a number of contemporary application development tools. It also considers scalability of pattern recognition schemes when dealing with such data"--

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in