000 04096nam a22005175i 4500
001 978-3-540-33791-1
003 DE-He213
005 20181204131310.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 _a9783540337911
_9978-3-540-33791-1
024 7 _a10.1007/978-3-540-33791-1
_2doi
040 _aISI Library, Kolkata
050 4 _aQA612-612.8
072 7 _aPBPD
_2bicssc
072 7 _aMAT038000
_2bisacsh
072 7 _aPBPD
_2thema
082 0 4 _a514.2
_223
100 1 _aEckmann, Beno.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aMathematical Survey Lectures 1943–2004
_h[electronic resource] /
_cby Beno Eckmann.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2006.
300 _aIX, 266 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aL’idée de dimension -- Topologie und Algebra -- Complex-analytic manifolds -- Homotopie et dualité -- Groupes d’homotopie et dualité -- Homotopy and cohomology theory -- Simple homotopy type and categories of fractions -- Some recent developments in the homology theory of groups -- Poincaré duality groups of dimension two are surface groups -- Continuous solutions of linear equations — An old problem, its history, and its solution -- Mathematics: Questions and Answers -- Hurwitz-Radon matrices revisited: From effective solution of the Hurwitz matrix equations to Bott periodicity -- Birth of fibre spaces, and homotopy -- 4-Manifolds, group invariants, and ? 2-Betti numbers -- The Euler characteristic — a few highlights in its long history -- Topology, algebra, analysis — relations and missing links -- to ?2-methods in topology: Reduced ?2-homology, harmonic chains, ?2-Betti numbers -- Die Zukunft der Mathematik Ein Rückblick auf Hilberts programmatischen Vortrag vor 100 Jahren -- Kolmogorov and contemporary mathematics -- Is algebraic topology a respectable field? -- Social choice and topology. A case of pure and applied mathematics.
520 _aThis collection traces the career of Beno Eckmann, whose work ranges across a broad spectrum of mathematical concepts from topology and differential geometry through homological algebra to group theory. One of our most influential living mathematicians, Eckmann has been associated for nearly his entire professional life with the Swiss Federal Institute of Technology Zurich (ETH), as student, lecturer, professor, and professor emeritus. The lectures offer a fascinating account of advances in pure mathematics from 1943 to 2004, as new topics and methods are introduced, and gradually become routine. The penultimate lecture is a personal-historical overview of algebraic topology, delivered in connection with the 40-year jubilee of the Institute for Mathematical Research (FIM), which Eckmann founded at ETH in 1964. In the final article, Eckmann looks beyond pure mathematics to consider the application in concrete fields of intellectual enterprise.
650 0 _aAlgebraic topology.
650 0 _aGlobal differential geometry.
650 0 _aAlgebra.
650 0 _aGroup theory.
650 1 4 _aAlgebraic Topology.
_0http://scigraph.springernature.com/things/product-market-codes/M28019
650 2 4 _aDifferential Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M21022
650 2 4 _aAssociative Rings and Algebras.
_0http://scigraph.springernature.com/things/product-market-codes/M11027
650 2 4 _aGroup Theory and Generalizations.
_0http://scigraph.springernature.com/things/product-market-codes/M11078
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642070341
776 0 8 _iPrinted edition:
_z9783540337904
776 0 8 _iPrinted edition:
_z9783540823216
856 4 0 _uhttps://doi.org/10.1007/978-3-540-33791-1
912 _aZDB-2-SMA
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c425172
_d425172