000 02984nam a22004815i 4500
001 978-3-7643-7449-5
003 DE-He213
005 20181204131312.0
007 cr nn 008mamaa
008 100301s2006 sz | s |||| 0|eng d
020 _a9783764374495
_9978-3-7643-7449-5
024 7 _a10.1007/3-7643-7449-7
_2doi
040 _aISI Library, Kolkata
050 4 _aQA150-272
072 7 _aPBF
_2bicssc
072 7 _aMAT002000
_2bisacsh
072 7 _aPBF
_2thema
082 0 4 _a512
_223
100 1 _aBaues, Hans-Joachim.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 4 _aThe Algebra of Secondary Cohomology Operations
_h[electronic resource] /
_cby Hans-Joachim Baues.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2006.
300 _aXXXII, 484 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Mathematics,
_x0743-1643 ;
_v247
505 0 _aSecondary Cohomology and Track Calculus -- Primary Cohomology Operations -- Track Theories and Secondary Cohomology Operations -- Calculus of Tracks -- Stable Linearity Tracks -- The Algebra of Secondary Cohomology Operations -- Products and Power Maps in Secondary Cohomology -- The Algebra Structure of Secondary Cohomology -- The Borel Construction and Comparison Maps -- Power Maps and Power Tracks -- Secondary Relations for Power Maps -- Künneth Tracks and Künneth-Steenrod Operations -- The Algebra of ?-tracks -- Secondary Hopf Algebras -- The Action of ? on Secondary Cohomology -- Interchange and the Left Action -- The Uniqueness of the Secondary Hopf Algebra ? -- Computation of the Secondary Hopf Algebra ?.
520 _aThe algebra of primary cohomology operations computed by the well-known Steenrod algebra is one of the most powerful tools of algebraic topology. This book computes the algebra of secondary cohomology operations which enriches the structure of the Steenrod algebra in a new and unexpected way. The book solves a long-standing problem on the algebra of secondary cohomology operations by developing a new algebraic theory of such operations. The results have strong impact on the Adams spectral sequence and hence on the computation of homotopy groups of spheres.
650 0 _aAlgebra.
650 0 _aAlgebraic topology.
650 1 4 _aAlgebra.
_0http://scigraph.springernature.com/things/product-market-codes/M11000
650 2 4 _aAlgebraic Topology.
_0http://scigraph.springernature.com/things/product-market-codes/M28019
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783764390983
776 0 8 _iPrinted edition:
_z9783764374488
830 0 _aProgress in Mathematics,
_x0743-1643 ;
_v247
856 4 0 _uhttps://doi.org/10.1007/3-7643-7449-7
912 _aZDB-2-SMA
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c425271
_d425271