000 02850nam a22004695i 4500
001 978-3-540-75932-4
003 DE-He213
005 20181204133001.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 _a9783540759324
_9978-3-540-75932-4
024 7 _a10.1007/978-3-540-75932-4
_2doi
040 _aISI Library, Kolkata
050 4 _aQA370-380
072 7 _aPBKJ
_2bicssc
072 7 _aMAT007000
_2bisacsh
072 7 _aPBKJ
_2thema
082 0 4 _a515.353
_223
100 1 _aUrbano, José Miguel.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 4 _aThe Method of Intrinsic Scaling
_h[electronic resource] :
_bA Systematic Approach to Regularity for Degenerate and Singular PDEs /
_cby José Miguel Urbano.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _aX, 154 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1930
505 0 _aThe Method of Intrinsic Scaling -- Weak Solutions and a Priori Estimates -- The Geometric Setting and an Alternative -- Towards the Hölder Continuity -- Some Applications -- Immiscible Fluids and Chemotaxis -- Flows in Porous Media: The Variable Exponent Case -- Phase Transitions: The Doubly Singular Stefan Problem.
520 _aThis set of lectures, which had its origin in a mini course delivered at the Summer Program of IMPA (Rio de Janeiro), is an introduction to intrinsic scaling, a powerful method in the analysis of degenerate and singular PDEs. In the first part, the theory is presented from scratch for the model case of the degenerate p-Laplace equation. This approach brings to light what is really essential in the method, leaving aside technical refinements needed to deal with more general equations, and is entirely self-contained. The second part deals with three applications of the theory to relevant models arising from flows in porous media and phase transitions. The aim is to convince the reader of the strength of the method as a systematic approach to regularity for this important class of equations.
650 0 _aDifferential equations, partial.
650 1 4 _aPartial Differential Equations.
_0http://scigraph.springernature.com/things/product-market-codes/M12155
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540869276
776 0 8 _iPrinted edition:
_z9783540759317
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1930
856 4 0 _uhttps://doi.org/10.1007/978-3-540-75932-4
912 _aZDB-2-SMA
912 _aZDB-2-LNM
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c425771
_d425771