000 03414nam a22005055i 4500
001 978-3-7643-8537-8
003 DE-He213
005 20181204133002.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 _a9783764385378
_9978-3-7643-8537-8
024 7 _a10.1007/978-3-7643-8537-8
_2doi
040 _aISI Library, Kolkata
050 4 _aQA150-272
072 7 _aPBF
_2bicssc
072 7 _aMAT002000
_2bisacsh
072 7 _aPBF
_2thema
082 0 4 _a512
_223
245 1 0 _aAlgebraic Cycles, Sheaves, Shtukas, and Moduli
_h[electronic resource] :
_bImpanga Lecture Notes /
_cedited by Piotr Pragacz.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2008.
300 _aVIII, 236 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aTrends in Mathematics,
_x2297-0215
505 0 _aNotes on the Life and Work of Józef Maria Hoene-Wro?ski -- Exotic Fine Moduli Spaces of Coherent Sheaves -- Moduli Spaces of Coherent Sheaves on Multiples Curves -- Lectures on Principal Bundles over Projective Varieties -- Lectures on Torsion-free Sheaves and Their Moduli -- Miscellany on the Zero Schemes of Sections of Vector Bundles -- Thom Polynomials of Invariant Cones, Schur Functions and Positivity -- Geometric Invariant Theory Relative to a Base Curve -- Some Applications of Algebraic Cycles to Affine Algebraic Geometry -- to the Stacks of Shtukas.
520 _a The articles in this volume are devoted to: - moduli of coherent sheaves; - principal bundles and sheaves and their moduli; - new insights into Geometric Invariant Theory; - stacks of shtukas and their compactifications; - algebraic cycles vs. commutative algebra; - Thom polynomials of singularities; - zero schemes of sections of vector bundles. The main purpose is to give "friendly" introductions to the above topics through a series of comprehensive texts starting from a very elementary level and ending with a discussion of current research. In these texts, the reader will find classical results and methods as well as new ones. The book is addressed to researchers and graduate students in algebraic geometry, algebraic topology and singularity theory. Most of the material presented in the volume has not appeared in books before. Contributors: Jean-Marc Drézet, Tomás L. Gómez, Adrian Langer, Piotr Pragacz, Alexander H. W. Schmitt, Vasudevan Srinivas, Ngo Dac Tuan, Andrzej Weber.
650 0 _aAlgebra.
650 0 _aGeometry, algebraic.
650 0 _aAlgebraic topology.
650 1 4 _aAlgebra.
_0http://scigraph.springernature.com/things/product-market-codes/M11000
650 2 4 _aAlgebraic Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M11019
650 2 4 _aAlgebraic Topology.
_0http://scigraph.springernature.com/things/product-market-codes/M28019
700 1 _aPragacz, Piotr.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783764392208
776 0 8 _iPrinted edition:
_z9783764385361
830 0 _aTrends in Mathematics,
_x2297-0215
856 4 0 _uhttps://doi.org/10.1007/978-3-7643-8537-8
912 _aZDB-2-SMA
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c425829
_d425829