000 02523nam a22004695i 4500
001 978-3-8348-9501-1
003 DE-He213
005 20181204133003.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 _a9783834895011
_9978-3-8348-9501-1
024 7 _a10.1007/978-3-8348-9501-1
_2doi
040 _aISI Library, Kolkata
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
072 7 _aPBMW
_2thema
082 0 4 _a516.35
_223
100 1 _aHarder, Günter.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aLectures on Algebraic Geometry I
_h[electronic resource] :
_bSheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces /
_cby Günter Harder.
264 1 _aWiesbaden :
_bVieweg+Teubner Verlag,
_c2008.
300 _aVIII, 300 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAspects of Mathematics,
_x0179-2156
505 0 _aCategories, products, Projective and Inductive Limits -- Basic Concepts of Homological Algebra -- Sheaves -- Cohomology of Sheaves -- Compact Riemann surfaces and Abelian Varieties.
520 _aThis book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them.
650 0 _aGeometry, algebraic.
650 0 _aGeometry.
650 1 4 _aAlgebraic Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M11019
650 2 4 _aGeometry.
_0http://scigraph.springernature.com/things/product-market-codes/M21006
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783528031367
830 0 _aAspects of Mathematics,
_x0179-2156
856 4 0 _uhttps://doi.org/10.1007/978-3-8348-9501-1
912 _aZDB-2-SMA
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c425863
_d425863