000 03660nam a22005655i 4500
001 978-0-8176-4743-8
003 DE-He213
005 20181204133145.0
007 cr nn 008mamaa
008 100725s2009 xxu| s |||| 0|eng d
020 _a9780817647438
_9978-0-8176-4743-8
024 7 _a10.1007/978-0-8176-4743-8
_2doi
040 _aISI Library, Kolkata
050 4 _aQA641-670
072 7 _aPBMP
_2bicssc
072 7 _aMAT012030
_2bisacsh
072 7 _aPBMP
_2thema
082 0 4 _a516.36
_223
245 1 0 _aRiemannian Topology and Geometric Structures on Manifolds
_h[electronic resource] /
_cedited by Krzysztof Galicki, Santiago R. Simanca.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2009.
300 _aXVI, 290 p. 50 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Mathematics,
_x0743-1643 ;
_v271
505 0 _aL 2-Cohomology of Spaces with Nonisolated Conical Singularities and Nonmultiplicativity of the Signature -- Hirzebruch Surfaces and Weighted Projective Planes -- Quaternionic Kähler Moduli Spaces -- Homological Mirror Symmetry and Algebraic Cycles -- Positive Sasakian Structures on 5-Manifolds -- Four-Manifolds, Curvature Bounds, and Convex Geometry -- The 1-Nullity of Sasakian Manifolds -- New Results in Sasaki—Einstein Geometry -- Some Examples of Toric Sasaki—Einstein Manifolds -- On the Geometry of Cohomogeneity One Manifolds with Positive Curvature -- The Sasaki Cone and Extremal Sasakian Metrics.
520 _aRiemannian Topology and Geometric Structures on Manifolds results from a similarly entitled conference held at the University of New Mexico in Albuquerque. The various contributions to this volume discuss recent advances in the areas of positive sectional curvature, Kähler and Sasaki geometry, and their interrelation to mathematical physics, notably M and superstring theory. Focusing on these fundamental ideas, this collection presents articles with original results, and plausible problems of interest for future research. Contributors: C.P. Boyer, J. Cheeger, X. Dai, K. Galicki, P. Gauduchon, N. Hitchin, L. Katzarkov, J. Kollár, C. LeBrun, P. Rukimbira, S.R. Simanca, J. Sparks, C. van Coevering, and W. Ziller.
650 0 _aGlobal differential geometry.
650 0 _aGeometry.
650 0 _aAlgebra.
650 0 _aGeometry, algebraic.
650 0 _aMathematical physics.
650 1 4 _aDifferential Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M21022
650 2 4 _aGeometry.
_0http://scigraph.springernature.com/things/product-market-codes/M21006
650 2 4 _aCategory Theory, Homological Algebra.
_0http://scigraph.springernature.com/things/product-market-codes/M11035
650 2 4 _aAlgebraic Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M11019
650 2 4 _aMathematical Methods in Physics.
_0http://scigraph.springernature.com/things/product-market-codes/P19013
700 1 _aGalicki, Krzysztof.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aSimanca, Santiago R.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817672348
776 0 8 _iPrinted edition:
_z9780817647421
830 0 _aProgress in Mathematics,
_x0743-1643 ;
_v271
856 4 0 _uhttps://doi.org/10.1007/978-0-8176-4743-8
912 _aZDB-2-SMA
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c426154
_d426154