000 06773nam a22005415i 4500
001 978-0-387-48807-3
003 DE-He213
005 20181204133146.0
007 cr nn 008mamaa
008 100714s2009 xxu| s |||| 0|eng d
020 _a9780387488073
_9978-0-387-48807-3
024 7 _a10.1007/978-0-387-48807-3
_2doi
040 _aISI Library, Kolkata
050 4 _aT57-57.97
072 7 _aPBW
_2bicssc
072 7 _aMAT003000
_2bisacsh
072 7 _aPBW
_2thema
082 0 4 _a519
_223
100 1 _aOldham, Keit.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 3 _aAn Atlas of Functions
_h[electronic resource] :
_bwith Equator, the Atlas Function Calculator /
_cby Keit Oldham, Jan Myland, Jerome Spanier.
264 1 _aNew York, NY :
_bSpringer New York,
_c2009.
300 _aXI, 750 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aGeneral Considerations -- The Constant Function c -- The Factorial Function n! -- The Zeta Numbers and Related Functions -- The Bernoulli Numbers B n -- The Euler Numbers E n -- The Binomial Coefficients -- The Linear Function bx + c and Its Reciprocal -- Modifying Functions -- The Heaviside u(x?a) And Dirac ?(x?a) Functions -- The Integer Powers x n And (bx+c) n -- The Square-Root Function and Its Reciprocal -- The Noninteger Powers x v -- The Semielliptic Function and Its Reciprocal -- The Semihyperbolic Functions And Their Reciprocals -- The Quadratic Function ax 2+bx+c and Its Reciprocal -- The Cubic Function x 3 + ax 2 + bx + c -- Polynomial Functions -- The Pochhammer Polynomials (x) n -- The Bernoulli Polynomials B n (x) -- The Euler Polynomials E n (x) -- The Legendre Polynomials P n (x) -- The Chebyshev Polynomials T n (x) and U n (x) -- The Laguerre Polynomials L n (x) -- The Hermite Polynomials H n (x) -- The Logarithmic Function ln(x) -- The Exponential Function exp(±x) -- Exponentials of Powers exp(± x v ) -- The Hyperbolic Cosine Cosh(x) and Sine Sinh(x) Functions -- The Hyperbolic Secant Sech(x) and Cosecant Csch(x) Functions -- The Hyperbolic Tangent tanh(x) and Cotangent coth(x) Functions -- The Inverse Hyperbolic Functions -- The Cosine cos(x) and Sine sin(x) Functions -- The Secant sec(x) And cosecant csc(x) Functions -- The Tangent tan(x) and Cotangent cot(x) Functions -- The Inverse Circular Functions -- Periodic Functions -- The Exponential Integrals Ei(x) and Ein(x) -- Sine and Cosine Integrals -- The Fresnel Integrals C(x) and S(x) -- The Error Function erf(x) and Its Complement erfc(x) -- The and Related Functions -- Dawson’s Integral daw(x) -- The Gamma Function ?(v) -- The Digamma Function ?(v) -- The Incomplete Gamma Functions -- The Parabolic Cylinder Function D v (x) -- The Kummer Function M(a,c,x) -- The Tricomi Function U(a,c,x) -- The Modified Bessel Functions I n (x) of Integer Order -- The Modified Bessel Function I v (x) of Arbitrary Order -- The Macdonald Function K v (x) -- The Bessel Functions J n (x) of Integer Order -- The Bessel Function J v (x) of Arbitrary Order -- The Neumann Function Y v (x) -- The Kelvin Functions -- The Airy Functions Ai(x) and Bi(x) -- The Struve Function h v (x) -- The Incomplete Beta Function B(v,?,x) -- The Legendre Functions P v (x) and Q v (x) -- The Gauss Hypergeometric Function F(a,b,c,x) -- The Complete Elliptic Integrals K(k) and E(k) -- The Incomplete Elliptic Integrals F(k,?) AND E(k,?) -- The Jacobian Elliptic Functions -- The Hurwitz Function ?(v, u).
520 _aThis second edition of An Atlas of Functions, with Equator, the Atlas Function Calculator, provides comprehensive information on several hundred functions or function families of interest to scientists, engineers and mathematicians who are concerned with the quantitative aspects of their field. Beginning with simple integer-valued functions, the book progresses to polynomials, exponential, trigonometric, Bessel, and hypergeometric functions, and many more. The 65 chapters are arranged roughly in order of increasing complexity, mathematical sophistication being kept to a minimum while stressing utility throughout. In addition to providing definitions and simple properties for every function, each chapter catalogs more complex interrelationships as well as the derivatives, integrals, Laplace transforms and other characteristics of the function. Numerous color figures in two- or three- dimensions depict their shape and qualitative features and flesh out the reader’s familiarity with the functions. In many instances, the chapter concludes with a concise exposition on a topic in applied mathematics associated with the particular function or function family. Features that make the Atlas an invaluable reference tool, yet simple to use, include: full coverage of those functions—elementary and "special”—that meet everyday needs a standardized chapter format, making it easy to locate needed information on such aspects as: nomenclature, general behavior, definitions, intrarelationships, expansions, approximations, limits, and response to operations of the calculus extensive cross-referencing and comprehensive indexing, with useful appendices the inclusion of innovative software--Equator, the Atlas Function Calculator the inclusion of new material dealing with interesting applications of many of the function families, building upon the favorable responses to similar material in the first edition.
650 0 _aMathematics.
650 0 _aFunctions, special.
650 0 _aEngineering.
650 1 4 _aApplications of Mathematics.
_0http://scigraph.springernature.com/things/product-market-codes/M13003
650 2 4 _aSpecial Functions.
_0http://scigraph.springernature.com/things/product-market-codes/M1221X
650 2 4 _aReal Functions.
_0http://scigraph.springernature.com/things/product-market-codes/M12171
650 2 4 _aTheoretical, Mathematical and Computational Physics.
_0http://scigraph.springernature.com/things/product-market-codes/P19005
650 2 4 _aComputational Intelligence.
_0http://scigraph.springernature.com/things/product-market-codes/T11014
700 1 _aMyland, Jan.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aSpanier, Jerome.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387564517
776 0 8 _iPrinted edition:
_z9780387488066
776 0 8 _iPrinted edition:
_z9781493950584
856 4 0 _uhttps://doi.org/10.1007/978-0-387-48807-3
912 _aZDB-2-SMA
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c426199
_d426199