000 03582nam a22005535i 4500
001 978-3-319-41069-2
003 DE-He213
005 20181204134227.0
007 cr nn 008mamaa
008 160930s2016 gw | s |||| 0|eng d
020 _a9783319410692
_9978-3-319-41069-2
024 7 _a10.1007/978-3-319-41069-2
_2doi
040 _aISI Library, Kolkata
050 4 _aQA273.A1-274.9
050 4 _aQA274-274.9
072 7 _aPBT
_2bicssc
072 7 _aMAT029000
_2bisacsh
072 7 _aPBT
_2thema
072 7 _aPBWL
_2thema
082 0 4 _a519.2
_223
100 1 _aBarbu, Viorel.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aStochastic Porous Media Equations
_h[electronic resource] /
_cby Viorel Barbu, Giuseppe Da Prato, Michael Röckner.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2016.
300 _aIX, 202 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2163
505 0 _aForeword -- Preface -- Introduction -- Equations with Lipschitz nonlinearities -- Equations with maximal monotone nonlinearities -- Variational approach to stochastic porous media equations -- L1-based approach to existence theory for stochastic porous media equations -- The stochastic porous media equations in Rd -- Transition semigroups and ergodicity of invariant measures -- Kolmogorov equations -- A Two analytical inequalities -- Bibliography -- Glossary -- Translator’s note -- Index.
520 _aFocusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.
650 0 _aDistribution (Probability theory.
650 0 _aDifferential equations, partial.
650 1 4 _aProbability Theory and Stochastic Processes.
_0http://scigraph.springernature.com/things/product-market-codes/M27004
650 2 4 _aPartial Differential Equations.
_0http://scigraph.springernature.com/things/product-market-codes/M12155
650 2 4 _aFluid- and Aerodynamics.
_0http://scigraph.springernature.com/things/product-market-codes/P21026
700 1 _aDa Prato, Giuseppe.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aRöckner, Michael.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319410685
776 0 8 _iPrinted edition:
_z9783319410708
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2163
856 4 0 _uhttps://doi.org/10.1007/978-3-319-41069-2
912 _aZDB-2-SMA
912 _aZDB-2-LNM
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c426482
_d426482