000 | 03582nam a22005535i 4500 | ||
---|---|---|---|
001 | 978-3-319-41069-2 | ||
003 | DE-He213 | ||
005 | 20181204134227.0 | ||
007 | cr nn 008mamaa | ||
008 | 160930s2016 gw | s |||| 0|eng d | ||
020 |
_a9783319410692 _9978-3-319-41069-2 |
||
024 | 7 |
_a10.1007/978-3-319-41069-2 _2doi |
|
040 | _aISI Library, Kolkata | ||
050 | 4 | _aQA273.A1-274.9 | |
050 | 4 | _aQA274-274.9 | |
072 | 7 |
_aPBT _2bicssc |
|
072 | 7 |
_aMAT029000 _2bisacsh |
|
072 | 7 |
_aPBT _2thema |
|
072 | 7 |
_aPBWL _2thema |
|
082 | 0 | 4 |
_a519.2 _223 |
100 | 1 |
_aBarbu, Viorel. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aStochastic Porous Media Equations _h[electronic resource] / _cby Viorel Barbu, Giuseppe Da Prato, Michael Röckner. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2016. |
|
300 |
_aIX, 202 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2163 |
|
505 | 0 | _aForeword -- Preface -- Introduction -- Equations with Lipschitz nonlinearities -- Equations with maximal monotone nonlinearities -- Variational approach to stochastic porous media equations -- L1-based approach to existence theory for stochastic porous media equations -- The stochastic porous media equations in Rd -- Transition semigroups and ergodicity of invariant measures -- Kolmogorov equations -- A Two analytical inequalities -- Bibliography -- Glossary -- Translator’s note -- Index. | |
520 | _aFocusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology. | ||
650 | 0 | _aDistribution (Probability theory. | |
650 | 0 | _aDifferential equations, partial. | |
650 | 1 | 4 |
_aProbability Theory and Stochastic Processes. _0http://scigraph.springernature.com/things/product-market-codes/M27004 |
650 | 2 | 4 |
_aPartial Differential Equations. _0http://scigraph.springernature.com/things/product-market-codes/M12155 |
650 | 2 | 4 |
_aFluid- and Aerodynamics. _0http://scigraph.springernature.com/things/product-market-codes/P21026 |
700 | 1 |
_aDa Prato, Giuseppe. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
700 | 1 |
_aRöckner, Michael. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783319410685 |
776 | 0 | 8 |
_iPrinted edition: _z9783319410708 |
830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2163 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-41069-2 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-LNM | ||
942 | _cEB | ||
950 | _aMathematics and Statistics (Springer-11649) | ||
999 |
_c426482 _d426482 |