000 04216nam a22006015i 4500
001 978-3-319-33379-3
003 DE-He213
005 20181204134228.0
007 cr nn 008mamaa
008 161210s2016 gw | s |||| 0|eng d
020 _a9783319333793
_9978-3-319-33379-3
024 7 _a10.1007/978-3-319-33379-3
_2doi
040 _aISI Library, Kolkata
050 4 _aQA401-425
050 4 _aQC19.2-20.85
072 7 _aPHU
_2bicssc
072 7 _aSCI040000
_2bisacsh
072 7 _aPHU
_2thema
082 0 4 _a530.15
_223
100 1 _aBorot, Gaëtan.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aAsymptotic Expansion of a Partition Function Related to the Sinh-model
_h[electronic resource] /
_cby Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2016.
300 _aXV, 222 p. 4 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aMathematical Physics Studies,
_x0921-3767
505 0 _aIntroduction -- Main results and strategy of proof -- Asymptotic expansion of ln ZN[V], the Schwinger-Dyson equation approach -- The Riemann–Hilbert approach to the inversion of SN -- The operators WN and U-1N -- Asymptotic analysis of integrals -- Several theorems and properties of use to the analysis -- Proof of Theorem 2.1.1 -- Properties of the N-dependent equilibrium measure -- The Gaussian potential -- Summary of symbols.
520 _aThis book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core  aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.
650 0 _aDistribution (Probability theory.
650 0 _aPotential theory (Mathematics).
650 0 _aMathematical physics.
650 0 _aStatistical physics.
650 1 4 _aMathematical Physics.
_0http://scigraph.springernature.com/things/product-market-codes/M35000
650 2 4 _aProbability Theory and Stochastic Processes.
_0http://scigraph.springernature.com/things/product-market-codes/M27004
650 2 4 _aPotential Theory.
_0http://scigraph.springernature.com/things/product-market-codes/M12163
650 2 4 _aComplex Systems.
_0http://scigraph.springernature.com/things/product-market-codes/P33000
650 2 4 _aMathematical Methods in Physics.
_0http://scigraph.springernature.com/things/product-market-codes/P19013
650 2 4 _aStatistical Physics and Dynamical Systems.
_0http://scigraph.springernature.com/things/product-market-codes/P19090
700 1 _aGuionnet, Alice.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aKozlowski, Karol K.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319333786
776 0 8 _iPrinted edition:
_z9783319333809
776 0 8 _iPrinted edition:
_z9783319814995
830 0 _aMathematical Physics Studies,
_x0921-3767
856 4 0 _uhttps://doi.org/10.1007/978-3-319-33379-3
912 _aZDB-2-SMA
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c426515
_d426515