000 | 03350nam a22005655i 4500 | ||
---|---|---|---|
001 | 978-3-319-61599-8 | ||
003 | DE-He213 | ||
005 | 20181204134417.0 | ||
007 | cr nn 008mamaa | ||
008 | 170909s2017 gw | s |||| 0|eng d | ||
020 |
_a9783319615998 _9978-3-319-61599-8 |
||
024 | 7 |
_a10.1007/978-3-319-61599-8 _2doi |
|
040 | _aISI Library, Kolkata | ||
050 | 4 | _aQA174-183 | |
072 | 7 |
_aPBG _2bicssc |
|
072 | 7 |
_aMAT002010 _2bisacsh |
|
072 | 7 |
_aPBG _2thema |
|
082 | 0 | 4 |
_a512.2 _223 |
100 | 1 |
_aWehrung, Friedrich. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aRefinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups _h[electronic resource] / _cby Friedrich Wehrung. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2017. |
|
300 |
_aVII, 242 p. 5 illus. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2188 |
|
505 | 0 | _aChapter 1. Background -- Chapter 2. Partial commutative monoids. - Chapter 3. Boolean inverse semigroups and additive semigroup homorphisms -- Chapter 4. Type monoids and V-measures. - Chapter 5. Type theory of special classes of Boolean inverse semigroups. - Chapter 6. Constructions involving involutary semirings and rings. - Chapter 7. discussion. - Bibliography -- Author Index. - Glossary -- Index. | |
520 | _aAdopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided. | ||
650 | 0 | _aGroup theory. | |
650 | 0 | _aAlgebra. | |
650 | 0 | _aK-theory. | |
650 | 0 | _aMathematics. | |
650 | 1 | 4 |
_aGroup Theory and Generalizations. _0http://scigraph.springernature.com/things/product-market-codes/M11078 |
650 | 2 | 4 |
_aAssociative Rings and Algebras. _0http://scigraph.springernature.com/things/product-market-codes/M11027 |
650 | 2 | 4 |
_aOrder, Lattices, Ordered Algebraic Structures. _0http://scigraph.springernature.com/things/product-market-codes/M11124 |
650 | 2 | 4 |
_aGeneral Algebraic Systems. _0http://scigraph.springernature.com/things/product-market-codes/M1106X |
650 | 2 | 4 |
_aK-Theory. _0http://scigraph.springernature.com/things/product-market-codes/M11086 |
650 | 2 | 4 |
_aMeasure and Integration. _0http://scigraph.springernature.com/things/product-market-codes/M12120 |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783319615981 |
776 | 0 | 8 |
_iPrinted edition: _z9783319616001 |
830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2188 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-61599-8 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-LNM | ||
942 | _cEB | ||
950 | _aMathematics and Statistics (Springer-11649) | ||
999 |
_c427011 _d427011 |