000 03638nam a22005295i 4500
001 978-3-319-58184-2
003 DE-He213
005 20181204134419.0
007 cr nn 008mamaa
008 170801s2017 gw | s |||| 0|eng d
020 _a9783319581842
_9978-3-319-58184-2
024 7 _a10.1007/978-3-319-58184-2
_2doi
040 _aISI Library, Kolkata
050 4 _aQA641-670
072 7 _aPBMP
_2bicssc
072 7 _aMAT012030
_2bisacsh
072 7 _aPBMP
_2thema
082 0 4 _a516.36
_223
100 1 _aWells, Jr., Raymond O.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aDifferential and Complex Geometry: Origins, Abstractions and Embeddings
_h[electronic resource] /
_cby Raymond O. Wells, Jr.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2017.
300 _aXIV, 319 p. 47 illus., 18 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Part I. Geometry in the Age of Enlightenment -- Algebraic Geometry -- Differential Geometry -- Part II. Differential and Projective Geometry in the Nineteenth Century -- Projective Geometry -- Gauss and Intrinsic Differential Geometry -- Riemann's Higher-Dimensional Geometry -- Part III. Origins of Complex Geometry -- The Complex Plane -- Elliptic and Abelian Integrals -- Elliptic Functions -- Complex Analysis -- Riemann Surfaces -- Complex Geometry at the End of the Nineteenth Century -- Part IV. Twentieth-Century Embedding Theorems -- Differentiable Manifolds -- Riemannian Manifolds -- Compact Complex Manifolds -- Noncompact Complex Manifolds.
520 _aDifferential and complex geometry are two central areas of mathematics with a long and intertwined history. This book, the first to provide a unified historical perspective of both subjects, explores their origins and developments from the sixteenth to the twentieth century. Providing a detailed examination of the seminal contributions to differential and complex geometry up to the twentieth century embedding theorems, this monograph includes valuable excerpts from the original documents, including works of Descartes, Fermat, Newton, Euler, Huygens, Gauss, Riemann, Abel, and Nash. Suitable for beginning graduate students interested in differential, algebraic or complex geometry, this book will also appeal to more experienced readers.
650 0 _aGlobal differential geometry.
650 0 _aGlobal analysis.
650 0 _aDifferential equations, partial.
650 0 _aAlgebraic topology.
650 1 4 _aDifferential Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M21022
650 2 4 _aGlobal Analysis and Analysis on Manifolds.
_0http://scigraph.springernature.com/things/product-market-codes/M12082
650 2 4 _aSeveral Complex Variables and Analytic Spaces.
_0http://scigraph.springernature.com/things/product-market-codes/M12198
650 2 4 _aProjective Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M21050
650 2 4 _aAlgebraic Topology.
_0http://scigraph.springernature.com/things/product-market-codes/M28019
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319581835
776 0 8 _iPrinted edition:
_z9783319581859
776 0 8 _iPrinted edition:
_z9783319863429
856 4 0 _uhttps://doi.org/10.1007/978-3-319-58184-2
912 _aZDB-2-SMA
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c427109
_d427109