000 04357nam a22005895i 4500
001 978-3-319-59969-4
003 DE-He213
005 20181204134419.0
007 cr nn 008mamaa
008 170911s2017 gw | s |||| 0|eng d
020 _a9783319599694
_9978-3-319-59969-4
024 7 _a10.1007/978-3-319-59969-4
_2doi
040 _aISI Library, Kolkata
050 4 _aQA241-247.5
072 7 _aPBH
_2bicssc
072 7 _aMAT022000
_2bisacsh
072 7 _aPBH
_2thema
082 0 4 _a512.7
_223
245 1 0 _aExploring the Riemann Zeta Function
_h[electronic resource] :
_b190 years from Riemann's Birth /
_cedited by Hugh Montgomery, Ashkan Nikeghbali, Michael Th. Rassias.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2017.
300 _aX, 298 p. 7 illus., 5 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aPreface (Dyson) -- 1. An introduction to Riemann's life, his mathematics, and his work on the zeta function (R. Baker) -- 2. Ramanujan's formula for zeta (2n+1) (B.C. Berndt, A. Straub) -- 3. Towards a fractal cohomology: Spectra of Polya-Hilbert operators, regularized determinants, and Riemann zeros (T. Cobler, M.L. Lapidus) -- The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec) -- 4. The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec) -- 5. Arthur's truncated Eisenstein series for SL(2,Z) and the Riemann Zeta Function, A Survey (D. Goldfield) -- 6. On a Cubic moment of Hardy's function with a shift (A. Ivic) -- 7. Some analogues of pair correlation of Zeta Zeros (Y. Karabulut, C.Y. Yıldırım) -- 8. Bagchi's Theorem for families of automorphic forms (E. Kowalski) -- 9. The Liouville function and the Riemann hypothesis (M.J. Mossinghoff, T.S. Trudgian) -- 10. Explorations in the theory of partition zeta functions (K. Ono, L. Rolen, R. Schneider) -- 11. Reading Riemann (S.J. Patterson) -- 12. A Taniyama product for the Riemann zeta function (D.E. Rohrlichłł).
520 _aThis book is concerned with the Riemann Zeta Function, its generalizations, and various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis and Probability Theory. Eminent experts in the field illustrate both old and new results towards the solution of long-standing problems and include key historical remarks. Offering a unified, self-contained treatment of broad and deep areas of research, this book will be an excellent tool for researchers and graduate students working in Mathematics, Mathematical Physics, Engineering and Cryptography.
650 0 _aNumber theory.
650 0 _aGeometry, algebraic.
650 0 _aFunctions of complex variables.
650 0 _aDifferentiable dynamical systems.
650 0 _aFunctional equations.
650 0 _aHarmonic analysis.
650 1 4 _aNumber Theory.
_0http://scigraph.springernature.com/things/product-market-codes/M25001
650 2 4 _aAlgebraic Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M11019
650 2 4 _aFunctions of a Complex Variable.
_0http://scigraph.springernature.com/things/product-market-codes/M12074
650 2 4 _aDynamical Systems and Ergodic Theory.
_0http://scigraph.springernature.com/things/product-market-codes/M1204X
650 2 4 _aDifference and Functional Equations.
_0http://scigraph.springernature.com/things/product-market-codes/M12031
650 2 4 _aAbstract Harmonic Analysis.
_0http://scigraph.springernature.com/things/product-market-codes/M12015
700 1 _aMontgomery, Hugh.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aNikeghbali, Ashkan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aRassias, Michael Th.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319599687
776 0 8 _iPrinted edition:
_z9783319599700
776 0 8 _iPrinted edition:
_z9783319867489
856 4 0 _uhttps://doi.org/10.1007/978-3-319-59969-4
912 _aZDB-2-SMA
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c427153
_d427153