000 | 04357nam a22005895i 4500 | ||
---|---|---|---|
001 | 978-3-319-59969-4 | ||
003 | DE-He213 | ||
005 | 20181204134419.0 | ||
007 | cr nn 008mamaa | ||
008 | 170911s2017 gw | s |||| 0|eng d | ||
020 |
_a9783319599694 _9978-3-319-59969-4 |
||
024 | 7 |
_a10.1007/978-3-319-59969-4 _2doi |
|
040 | _aISI Library, Kolkata | ||
050 | 4 | _aQA241-247.5 | |
072 | 7 |
_aPBH _2bicssc |
|
072 | 7 |
_aMAT022000 _2bisacsh |
|
072 | 7 |
_aPBH _2thema |
|
082 | 0 | 4 |
_a512.7 _223 |
245 | 1 | 0 |
_aExploring the Riemann Zeta Function _h[electronic resource] : _b190 years from Riemann's Birth / _cedited by Hugh Montgomery, Ashkan Nikeghbali, Michael Th. Rassias. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2017. |
|
300 |
_aX, 298 p. 7 illus., 5 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aPreface (Dyson) -- 1. An introduction to Riemann's life, his mathematics, and his work on the zeta function (R. Baker) -- 2. Ramanujan's formula for zeta (2n+1) (B.C. Berndt, A. Straub) -- 3. Towards a fractal cohomology: Spectra of Polya-Hilbert operators, regularized determinants, and Riemann zeros (T. Cobler, M.L. Lapidus) -- The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec) -- 4. The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec) -- 5. Arthur's truncated Eisenstein series for SL(2,Z) and the Riemann Zeta Function, A Survey (D. Goldfield) -- 6. On a Cubic moment of Hardy's function with a shift (A. Ivic) -- 7. Some analogues of pair correlation of Zeta Zeros (Y. Karabulut, C.Y. Yıldırım) -- 8. Bagchi's Theorem for families of automorphic forms (E. Kowalski) -- 9. The Liouville function and the Riemann hypothesis (M.J. Mossinghoff, T.S. Trudgian) -- 10. Explorations in the theory of partition zeta functions (K. Ono, L. Rolen, R. Schneider) -- 11. Reading Riemann (S.J. Patterson) -- 12. A Taniyama product for the Riemann zeta function (D.E. Rohrlichłł). | |
520 | _aThis book is concerned with the Riemann Zeta Function, its generalizations, and various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis and Probability Theory. Eminent experts in the field illustrate both old and new results towards the solution of long-standing problems and include key historical remarks. Offering a unified, self-contained treatment of broad and deep areas of research, this book will be an excellent tool for researchers and graduate students working in Mathematics, Mathematical Physics, Engineering and Cryptography. | ||
650 | 0 | _aNumber theory. | |
650 | 0 | _aGeometry, algebraic. | |
650 | 0 | _aFunctions of complex variables. | |
650 | 0 | _aDifferentiable dynamical systems. | |
650 | 0 | _aFunctional equations. | |
650 | 0 | _aHarmonic analysis. | |
650 | 1 | 4 |
_aNumber Theory. _0http://scigraph.springernature.com/things/product-market-codes/M25001 |
650 | 2 | 4 |
_aAlgebraic Geometry. _0http://scigraph.springernature.com/things/product-market-codes/M11019 |
650 | 2 | 4 |
_aFunctions of a Complex Variable. _0http://scigraph.springernature.com/things/product-market-codes/M12074 |
650 | 2 | 4 |
_aDynamical Systems and Ergodic Theory. _0http://scigraph.springernature.com/things/product-market-codes/M1204X |
650 | 2 | 4 |
_aDifference and Functional Equations. _0http://scigraph.springernature.com/things/product-market-codes/M12031 |
650 | 2 | 4 |
_aAbstract Harmonic Analysis. _0http://scigraph.springernature.com/things/product-market-codes/M12015 |
700 | 1 |
_aMontgomery, Hugh. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aNikeghbali, Ashkan. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aRassias, Michael Th. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783319599687 |
776 | 0 | 8 |
_iPrinted edition: _z9783319599700 |
776 | 0 | 8 |
_iPrinted edition: _z9783319867489 |
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-59969-4 |
912 | _aZDB-2-SMA | ||
942 | _cEB | ||
950 | _aMathematics and Statistics (Springer-11649) | ||
999 |
_c427153 _d427153 |