000 03777nam a22005535i 4500
001 978-981-10-4256-0
003 DE-He213
005 20181204134420.0
007 cr nn 008mamaa
008 170505s2017 si | s |||| 0|eng d
020 _a9789811042560
_9978-981-10-4256-0
024 7 _a10.1007/978-981-10-4256-0
_2doi
040 _aISI Library, Kolkata
050 4 _aQA184-205
072 7 _aPBF
_2bicssc
072 7 _aMAT002050
_2bisacsh
072 7 _aPBF
_2thema
082 0 4 _a512.5
_223
100 1 _aLal, Ramji.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aAlgebra 2
_h[electronic resource] :
_bLinear Algebra, Galois Theory, Representation theory, Group extensions and Schur Multiplier /
_cby Ramji Lal.
264 1 _aSingapore :
_bSpringer Singapore :
_bImprint: Springer,
_c2017.
300 _aXVIII, 432 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aInfosys Science Foundation Series in Mathematical Sciences,
_x2364-4036
505 0 _aChapter 1. Vector Space -- Chapter 2. Matrices and Linear Equations -- Chapter 3. Linear Transformations -- Chapter 4. Inner Product Space -- Chapter 5. Determinants and Forms -- Chapter 6. Canonical Forms, Jordan and Rational Forms -- Chapter 7. General Linear Algebra -- Chapter 8. Field Theory, Galois Theory -- Chapter 9. Representation Theory of Finite Groups -- Chapter 10. Group Extensions and Schur Multiplier.
520 _aThis is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1–5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics. .
650 0 _aMatrix theory.
650 0 _aAlgebra.
650 0 _aGroup theory.
650 0 _aNumber theory.
650 1 4 _aLinear and Multilinear Algebras, Matrix Theory.
_0http://scigraph.springernature.com/things/product-market-codes/M11094
650 2 4 _aAssociative Rings and Algebras.
_0http://scigraph.springernature.com/things/product-market-codes/M11027
650 2 4 _aCommutative Rings and Algebras.
_0http://scigraph.springernature.com/things/product-market-codes/M11043
650 2 4 _aNon-associative Rings and Algebras.
_0http://scigraph.springernature.com/things/product-market-codes/M11116
650 2 4 _aGroup Theory and Generalizations.
_0http://scigraph.springernature.com/things/product-market-codes/M11078
650 2 4 _aNumber Theory.
_0http://scigraph.springernature.com/things/product-market-codes/M25001
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9789811042553
776 0 8 _iPrinted edition:
_z9789811042577
830 0 _aInfosys Science Foundation Series in Mathematical Sciences,
_x2364-4036
856 4 0 _uhttps://doi.org/10.1007/978-981-10-4256-0
912 _aZDB-2-SMA
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c427179
_d427179