000 03584nam a22006135i 4500
001 978-3-319-74350-9
003 DE-He213
005 20181204134423.0
007 cr nn 008mamaa
008 180324s2017 gw | s |||| 0|eng d
020 _a9783319743509
_9978-3-319-74350-9
024 7 _a10.1007/978-3-319-74350-9
_2doi
040 _aISI Library, Kolkata
050 4 _aQA351
072 7 _aPBKF
_2bicssc
072 7 _aMAT034000
_2bisacsh
072 7 _aPBKF
_2thema
082 0 4 _a515.5
_223
100 1 _aBaricz, Árpád.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aSeries of Bessel and Kummer-Type Functions
_h[electronic resource] /
_cby Árpád Baricz, Dragana Jankov Maširević, Tibor K. Pogány.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2017.
300 _aXIX, 201 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2207
505 0 _a1. Introduction and Preliminaries -- 2. Neumann Series -- 3. Kapteyn Series -- 4. Schlomilch Series -- 5. Miscellanea.
520 _aThis book is devoted to the study of certain integral representations for Neumann, Kapteyn, Schlömilch, Dini and Fourier series of Bessel and other special functions, such as Struve and von Lommel functions. The aim is also to find the coefficients of the Neumann and Kapteyn series, as well as closed-form expressions and summation formulas for the series of Bessel functions considered. Some integral representations are deduced using techniques from the theory of differential equations. The text is aimed at a mathematical audience, including graduate students and those in the scientific community who are interested in a new perspective on Fourier–Bessel series, and their manifold and polyvalent applications, mainly in general classical analysis, applied mathematics and mathematical physics.
650 0 _aFunctions, special.
650 0 _aSequences (Mathematics).
650 0 _aMathematics.
650 0 _aFunctions of complex variables.
650 0 _aDifferential Equations.
650 0 _aAstronomy.
650 1 4 _aSpecial Functions.
_0http://scigraph.springernature.com/things/product-market-codes/M1221X
650 2 4 _aSequences, Series, Summability.
_0http://scigraph.springernature.com/things/product-market-codes/M1218X
650 2 4 _aReal Functions.
_0http://scigraph.springernature.com/things/product-market-codes/M12171
650 2 4 _aFunctions of a Complex Variable.
_0http://scigraph.springernature.com/things/product-market-codes/M12074
650 2 4 _aOrdinary Differential Equations.
_0http://scigraph.springernature.com/things/product-market-codes/M12147
650 2 4 _aAstronomy, Astrophysics and Cosmology.
_0http://scigraph.springernature.com/things/product-market-codes/P22006
700 1 _aJankov Maširević, Dragana.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aPogány, Tibor K.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319743493
776 0 8 _iPrinted edition:
_z9783319743516
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2207
856 4 0 _uhttps://doi.org/10.1007/978-3-319-74350-9
912 _aZDB-2-SMA
912 _aZDB-2-LNM
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c427347
_d427347