000 03430nam a22005175i 4500
001 978-3-319-67673-9
003 DE-He213
005 20181204134423.0
007 cr nn 008mamaa
008 171127s2017 gw | s |||| 0|eng d
020 _a9783319676739
_9978-3-319-67673-9
024 7 _a10.1007/978-3-319-67673-9
_2doi
040 _aISI Library, Kolkata
050 4 _aQA71-90
072 7 _aPBKS
_2bicssc
072 7 _aMAT006000
_2bisacsh
072 7 _aPBKS
_2thema
082 0 4 _a518
_223
100 1 _aCangiani, Andrea.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _ahp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes
_h[electronic resource] /
_cby Andrea Cangiani, Zhaonan Dong, Emmanuil H. Georgoulis, Paul Houston.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2017.
300 _aVIII, 131 p. 32 illus., 1 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Mathematics,
_x2191-8198
520 _aOver the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and element-orders is shown to deliver substantial computational gains in several practical scenarios.  .
650 0 _aComputer science
_xMathematics.
650 0 _aComputer science.
650 1 4 _aComputational Mathematics and Numerical Analysis.
_0http://scigraph.springernature.com/things/product-market-codes/M1400X
650 2 4 _aMathematics of Computing.
_0http://scigraph.springernature.com/things/product-market-codes/I17001
650 2 4 _aTheoretical, Mathematical and Computational Physics.
_0http://scigraph.springernature.com/things/product-market-codes/P19005
700 1 _aDong, Zhaonan.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aGeorgoulis, Emmanuil H.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aHouston, Paul.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319676715
776 0 8 _iPrinted edition:
_z9783319676722
830 0 _aSpringerBriefs in Mathematics,
_x2191-8198
856 4 0 _uhttps://doi.org/10.1007/978-3-319-67673-9
912 _aZDB-2-SMA
942 _cEB
950 _aMathematics and Statistics (Springer-11649)
999 _c427372
_d427372