| 000 | 01976nam a2200289 4500 | ||
|---|---|---|---|
| 999 |
_c428237 _d428237 |
||
| 003 | ISI Library, Kolkata | ||
| 005 | 20210921111109.0 | ||
| 008 | 210921b ||||| |||| 00| 0 eng d | ||
| 020 | _a9782856299371 | ||
| 040 |
_aISI Library _bEnglish |
||
| 082 | 0 | 4 |
_223 _a512 _bAs853 |
| 100 | 1 |
_aBhatt, Bhargav _eauthor |
|
| 245 | 1 | 0 |
_aRevisiting the de Rham-Witt complex/ _cBhargav Bhatt, Jacob Lurie and Akhil Mathew |
| 260 |
_aParis: _bSociete mathematique De France, _c2021 |
||
| 300 |
_aviii,168 pages, _c23 cm. |
||
| 490 | 0 |
_aAsterisque; _v424 |
|
| 504 | _aIncludes bibliographical references | ||
| 505 | 0 | _aIntroduction -- Dieudonne complexes -- Dieudonne Algebras -- The Saturated de Rham-Witt complex -- Localizations of Dieudonne algebras -- The case of a Cusp -- Homological algebra -- The Nygaard filtration -- The Derived de Rham-Witt complex -- Comparison with crystalline cohomology -- The Crystalline comparison for AΩ | |
| 520 | _aThe goal of this paper is to offer a new construction of the de Rham-Witt complex of smooth varieties over perfect fields of characteristic p>0. We introduce a category of cochain complexes equipped with an endomorphism F of underlying graded abelian groups satisfying dF=pFd, whose homological algebra we study in detail. To any such object satisfying an abstract analog of the Cartier isomorphism, an elementary homological process associates a generalization of the de Rham-Witt construction. Abstractly, the homological algebra can be viewed as a calculation of the fixed points of the Berthelot-Ogus operator Lηp on the p-complete derived category. We give various applications of this approach, including a simplification of the crystalline comparison for the AΩ-cohomology theory introduced | ||
| 650 | 4 | _aAlgebra | |
| 650 | 4 | _aDe Rham-Witt Complex | |
| 650 | 4 | _aCrystalline Cohomology | |
| 650 | 4 | _aWitt Vector | |
| 700 | 1 |
_aLurie, Jacob _eauthor |
|
| 700 | 1 |
_aMathew, Akhil _eauthor |
|
| 942 |
_2ddc _cBK |
||