000 01976nam a2200289 4500
999 _c428237
_d428237
003 ISI Library, Kolkata
005 20210921111109.0
008 210921b ||||| |||| 00| 0 eng d
020 _a9782856299371
040 _aISI Library
_bEnglish
082 0 4 _223
_a512
_bAs853
100 1 _aBhatt, Bhargav
_eauthor
245 1 0 _aRevisiting the de Rham-Witt complex/
_cBhargav Bhatt, Jacob Lurie and Akhil Mathew
260 _aParis:
_bSociete mathematique De France,
_c2021
300 _aviii,168 pages,
_c23 cm.
490 0 _aAsterisque;
_v424
504 _aIncludes bibliographical references
505 0 _aIntroduction -- Dieudonne complexes -- Dieudonne Algebras -- The Saturated de Rham-Witt complex -- Localizations of Dieudonne algebras -- The case of a Cusp -- Homological algebra -- The Nygaard filtration -- The Derived de Rham-Witt complex -- Comparison with crystalline cohomology -- The Crystalline comparison for AΩ
520 _aThe goal of this paper is to offer a new construction of the de Rham-Witt complex of smooth varieties over perfect fields of characteristic p>0. We introduce a category of cochain complexes equipped with an endomorphism F of underlying graded abelian groups satisfying dF=pFd, whose homological algebra we study in detail. To any such object satisfying an abstract analog of the Cartier isomorphism, an elementary homological process associates a generalization of the de Rham-Witt construction. Abstractly, the homological algebra can be viewed as a calculation of the fixed points of the Berthelot-Ogus operator Lηp on the p-complete derived category. We give various applications of this approach, including a simplification of the crystalline comparison for the AΩ-cohomology theory introduced
650 4 _aAlgebra
650 4 _aDe Rham-Witt Complex
650 4 _aCrystalline Cohomology
650 4 _aWitt Vector
700 1 _aLurie, Jacob
_eauthor
700 1 _aMathew, Akhil
_eauthor
942 _2ddc
_cBK