000 01795nam a2200229Ia 4500
003 ISI Library, Kolkata
005 20250806020010.0
008 250221b |||||||| |||| 00| 0 eng d
020 _a9789332549531
040 _aISI Library
_bEnglish
082 0 4 _223rd
_a514
_bM966
100 1 _aMunkres, James
_eauthor
245 1 0 _aTopology/
_cJames Munkres
250 _a2nd ed.
260 _aNoida:
_bPearson India,
_c2015
300 _a504 pages:
_bdiagrams;
_c23 cm.
504 _aIncludes bibliography and index
505 0 _aSet Theory and Logic -- Topological Spaces and Continuous Functions -- Connectedness and Compactness -- Countability and Separation Axioms -- The Tychonoff Theorem -- Metrization Theorems and Paracompactness -- Complete Metric Spaces and Function Spaces -- Baire Spaces and Dimension Theory -- The Fundamental Group -- Separation Theorems in the Plane -- The Seifert-van Kampen Theorem -- Classification of Covering Spaces -- Classification of Surfaces
520 _aThis introduction to topology provides separate, in-depth coverage of both general topology and algebraic topology. Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.
650 4 _aTopology
942 _cBK
_2ddc
_02
999 _c436772
_d436772