| 000 | 01364nam a22002537a 4500 | ||
|---|---|---|---|
| 003 | ISI Library, Kolkata | ||
| 005 | 20250915173037.0 | ||
| 008 | 250915b |||||||| |||| 00| 0 eng d | ||
| 020 | _a9782379052118 | ||
| 040 |
_aISI Library _bEnglish |
||
| 082 | 0 | 4 |
_223rd _a519.233 _bB223 |
| 100 | 1 |
_aBaradat, A. _eauthor |
|
| 245 | 1 | 0 |
_aRegularized unbalanced optimal transport as entropy minimization with respect to branching Brownian motion/ _cA. Baradat and H. Lavenant |
| 260 |
_aParis: _bSociété Mathématique de France, _c2025 |
||
| 300 |
_aviii, 194 pages: _bill.; _c25 cm. |
||
| 490 | 0 |
_aAstérisque; _v458 |
|
| 504 | _aIncludes bibliography | ||
| 520 | _aThe monograph connects a branching Schrödinger problem (minimizing relative entropy with respect to a branching Brownian motion) with regularized unbalanced optimal transport. Using duality and probabilistic analysis, the authors show equivalences between the two formulations, characterize laws with finite entropy relative to branching Brownian motion, analyze the small-noise (diffusivity → 0) limit (linking to partial optimal transport), and present numerical discretizations solved via convex optimization. | ||
| 650 | 4 | _aOptimal Transport | |
| 650 | 4 | _aBranching Brownian Motion | |
| 650 | 4 | _aEntropy (Information Theory) | |
| 700 | 1 |
_aLavenant, H. _eauthor |
|
| 942 |
_2ddc _cBK |
||
| 999 |
_c437310 _d437310 |
||